• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
Home » EVGA Superclock CPU Cooler Review

EVGA Superclock CPU Cooler Review

[nextpage title=”Introduction”]Today we are reviewing the Superclock, the first CPU cooler from EVGA, a traditional video card manufacturer. It has a tower heatsink with five heatpipes and a 120 mm fan. Check it out!

The EVGA Superclock comes in a cardboard box with a front window where you can see the transparent fan, as shown in Figure 1.

EVGA SuperclockFigure 1: Package

Figure 2 shows what the box contains: the heatsink, fan, manual, installation hardware, and a small tube of thermal compound.

EVGA SuperclockFigure 2: Accessories

Figure 3 presents the EVGA Superclock CPU cooler.

EVGA SuperclockFigure 3: The EVGA Superclock

This cooler is discussed in detail in the following pages.

[nextpage title=”The EVGA Superclock”]

Figure 4 reveals the front of the heatsink, where the 120 mm fan will be installed.

EVGA SuperclockFigure 4: Front view

Figure 5 presents the side of the heatsink. Notice that the fins are folded, creating a closed panel.

EVGA SuperclockFigure 5: Side view

Figure 6 shows the back of the heatsink. Due to the shape of the fins and the extended closed surface, the area for airflow exit is smaller than the front intake area.

EVGA SuperclockFigure 6: Rear view

The top of the heatsink is shown in Figure 7. Note that the fins have a texture in order to create turbulence that improves the heat transfer.

EVGA SuperclockFigure 7: Top view

[nextpage title=”The EVGA Superclock (Cont’d)”]

Figure 8 shows the shape of the black-painted heatpipes. They are not in a single line, so they can receive more direct airflow.

EVGA SuperclockFigure 8: Heatpipes

In Figure 9, you can see the base of the cooler. The heatpipes touch the CPU directly; they are not polished enough for a mirror-like look.

EVGA SuperclockFigure 9: Base

The 120 mm fan, which has red LEDs, is shown in Figure 10. It has a four-pin connector, which means it is compatible with PWM speed control.

EVGA SuperclockFigure 10: Fan

[nextpage title=”Installation”]

Figure 11 shows the backplate used to install the Superclock. The same plate can be used with any Intel or AMD supported processor; you just need to install the screws in the appropriate holes.

EVGA SuperclockFigure 11: Backplate with screws

Figure 12 illustrates the backplate installed on our motherboard.

EVGA SuperclockFigure 12: Holding system installed

In Figure 13, you can see the heatsink installed on your computer. Now you merely have to install the fan.

EVGA Superclock CPU Cooler ReviewFigure 13: Heatsink installed

Figure 14 reveals the EVGA Superclock installed in our computer.

EVGA SuperclockFigure 14: Installed in our system

[nextpage title=”How We Tested”]

We tested the cooler with a Core i7-860 CPU (quad-core, 2.8 GHz), which is a socket LGA1156 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 3.3 GHz (150 MHz base clock and 22x multiplier), keeping the standard core voltage (Vcore), which was the maximum stable overclock we could make with the stock cooler. Keep in mind that we could have raised the CPU clock more, but to include the stock cooler in our comparison, we needed to use this moderate overclock.

We measured noise and temperature with the CPU idle and under full load. In order to get 100% CPU usage in all threads, we ran Prime 95 25.11 with the "In-place Large FFTs" option. (In this version, the software uses all available threads.)

We compared the tested cooler to the Intel stock cooler with a copper base (included with the CPU), as well as with other coolers. Note that in the past, we tested coolers with a socket LGA775 CPU, and we retested some "old" coolers with this new methodology. This means you can find different values in older reviews than the values you will read in the next page. Every cooler was tested with the thermal compound that accompanies it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings. During the tests, the left panel of the case was open.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed 4" (10 cm) from the fan. We turned off the case and video board cooler fans so they wouldn’t interfere with the results. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acoustically insulated room with no other noise sources, which isn’t the case here.

Hardware Configuration

  • Processor: Core i7-860
  • Motherboard: Gigabyte P55A-UD6
  • Memory: 2 GB Markvision (DDR3-1333/PC3-10700 with 9-9-9-22 timings), configured at 1,200 MHz
  • Hard disk: Seagate Barracuda XT 2 TB
  • Video card: Zotac GeForce GTS 250
  • Video resolution: 1680×1050
  • Video monitor: Samsung Syncmaster 2232BW Plus
  • Power supply: Seventeam ST-550P-AM
  • Case: 3RSystem L-1100 T.REX Cool

Operating System Configuration

  • Windows 7 Home Premium 64 bit

Software Used

  • Prime95
  • SpeedFan

Error Margin

We adopted a 2 °C error margin, meaning temperature differences below 2 °C are considered irrelevant.

[nextpage title=”Our Tests”]

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at idle and at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the minimum speed on the idle test and at full speed on the full load test.

 

Idle Processor

Processor at Full Load

Cooler Room Temp. Noise Speed Core Temp. Noise Speed Core Temp.
Intel stock (socket LGA1156) 14 °C 44 dBA 1700 rpm 46 °C 54 dBA 2500 rpm 90 °C
Cooler Master Hyper TX3 G1 14 °C 47 dBA 2050 rpm 33 °C 56 dBA 2900 rpm 62 °C
Zalman CNPS10X Extreme 14 °C 45 dBA 1400 rpm 27 °C 53 dBA 1950 rpm 51 °C
Thermaltake Silent 1156 14 °C 44 dBA 1200 rpm 38 °C 49 dBA 1750 rpm 69 °C
Noctua NH-D14 14 °C 49 dBA 1250 rpm 27 °C 49 dBA 1250 rpm 53 °C
Zalman CNPS10X Performa 14 °C 46 dBA 1500 rpm 28 °C 52 dBA 1950 rpm 54 °C
Prolimatech Megahalems 14 °C 40 dBA 750 rpm 27 °C 60 dBA 2550 rpm 50 °C
Thermaltake Frio 14 °C 46 dBA 1450 rpm 27 °C 60 dBA 2500 rpm 50 °C
Prolimatech Samuel 17 14 °C 40 dBA 750 rpm 40 °C 60 dBA 2550 rpm 63 °C
Zalman CNPS8000A 18 °C 43 dBA 1400 rpm 39 °C 54 dBA 2500 rpm 70 °C
Spire TherMax Eclipse II 14 °C 55 dBA 2200 rpm 28 °C 55 dBA 2200 rpm 53 °C
Scythe Ninja3 17 °C 39 dBA 700 rpm 32 °C 55 dBA 1800 rpm 57 °C
Corsair A50 18 °C 52 dBA 1900 rpm 33 °C 52 dBA 1900 rpm 60 °C
Thermaltake Jing 18 °C 44 dBA 850 rpm 34 °C 49 dBA 1300 rpm 60 °C
GlacialTech Alaska 18 °C 43 dBA 1150 rpm 36 °C 51 dBA 1600 rpm 60 °C
Deepcool Gamer Storm 18 °C 43 dBA 1100 rpm 35 °C 48 dBA 1600 rpm 62 °C
Corsair A70 26 °C 56 dBA 1900 rpm 40 °C 56 dBA 1900 rpm 65 °C
Deepcool Ice Blade Pro 23 °C 45 dBA 1200 rpm 38 °C 52 dBA 1500 rpm 64 °C
AC Freezer 7 Pro Rev. 2 23 °C 47 dBA 1750 rpm 44 °C 51 dBA 2100 rpm 77 °C
Corsair H70 27 °C 60 dBA 1900 rpm 37 °C 60 dBA 1900 rpm 61 °C
Zalman CNPS9900 Max 27 °C 55 dBA 1600 rpm 38 °C 58 dBA 1750 rpm 63 °C
Arctic Cooling Freezer 11 LP 25 °C 45 dBA 1700 rpm 51 °C 49 dBA 1950 rpm 91 °C
CoolIT Vantage 26 °C 60 dBA 2500 rpm 37 °C 60 dBA 2500 rpm 62 °C
Deepcool Ice Matrix 600 25 °C 46 dBA 1100 rpm 41 °C 53 dBA 1300 rpm 69 °C
Titan Hati 26 °C 46 dBA 1500 rpm 40 °C 57 dBA 2450 rpm 68 °C
Arctic Cooling Freezer 13 27 °C 49 dBA 1950 rpm 41 °C 53 dBA 2300 rpm 70 °C
Noctua NH-C14 26 °C 52 dBA 1300 rpm 37 °C 52 dBA 1300 rpm 61 °C
Intel XTS100H 26 °C 49 dBA 1200 rpm 42 °C 64 dBA 2600 rpm 68 °C
Zalman CNPS5X SZ 23 °C 52 dBA 2250 rpm 38 °C 57 dBA 2950 rpm 69 °C
Thermaltake SlimX3 21 °C 50 dBA 2700 rpm 46 °C 50 dBA 2750 rpm 99 °C
Cooler Master Hyper 101 21 °C 50 dBA 2600 rpm 38 °C 57 dBA 3300 rpm 71 °C
Antec Kühler H2O 620 19 °C 52 dBA 1400 rpm 34 °C 55 dBA 1400 rpm 58 °C
Arctic Cooling Freezer 13 Pro 20 °C 46 dBA 1100 rpm 36 °C 49 dBA 1300 rpm 62 °C
GlacialTech Siberia 22 °C 49 dBA 1400 rpm 34 °C 49 dBA 1400 rpm 61 °C
Evercool Transformer 3 18 °C 46 dBA 1800 rpm 33 °C 51 dBA 2250 rpm 65 °C
Zalman CNPS11X Extreme 20 °C 51 dBA 1850 rpm 34 °C 56 dBA 2050 rpm 61 °C
Thermaltake Frio OCK 15 °C 44 dBA 1000 rpm 27 °C 64 dBA 2200 rpm 51 °C
Prolimatech Genesis 18 °C 49 dBA 1050 rpm 30 °C 49 dBA 1050 rpm 54 °C
Arctic Cooling Freezer XTREME Rev. 2 15 °C 41 dBA 1050 rpm 32 °C 44 dBA 1400 rpm 60 °C
NZXT HAVIK 140 16 °C 48 dBA 1250 rpm 29 °C 49 dBA 1250 rpm 55 °C
Antec Kühler H2O 920 18 °C 41 dBA 650 rpm 29 °C 64 dBA 2500 rpm 49 °C
Zalman CNP7X LED 18 °C 45 dBA 1950 rpm 33 °C 48 dBA 2150 rpm 58 °C
EVGA Superclock 14 °C 43 dBA 1300 rpm 27 °C 58 dBA 2350 rpm 47 °C

In the graph below, at full load you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

EVGA Superclock

[nextpage title=”Main Specifications”]

The main specifications for the EVGA Superclock CPU cooler include:

  • Application: Sockets 775, 1155, 1156, 1366, 754, 939, F, AM2, AM2+, and AM3 processors
  • Dimensions: 5.3 x 3.6 x 6.0 inches (135 x 91 x 152 mm) (W x L x H)
  • Fins: Aluminum
  • Base: Aluminum, with heatpipes directly touching the CPU
  • Heat-pipes: Five 8 mm copper heat-pipes
  • Fan: 120 mm
  • Nominal fan speed: 2500 rpm
  • Fan air flow: 84 cfm
  • Maximum power consumption: 3.84 W
  • Nominal noise level: 41.5 dBA
  • Weight: 1.14 lbs (510 g)
  • More information: https://www.evga.com
  • Average Price in the US*: USD 53.00

* Researched at Newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

EVGA made quite an impression with its debut in the CPU cooler market. They took the concepts found on all high-end coolers and combined them in the Superclock. A quiet yet powerful fan, five eight-mm direct-touch heatpipes, textured fins, closed sides, and irregular fin borders – all those features seem to be the recipe for a winner air cooler.

We thought it was impossible to achieve such a performance level without being a giant, loud, and expensive cooler. But the Superclock beats all the air coolers we’ve already tested, being relatively inexpensive, quiet, and small.

The EVGA Superclock is the best air cooler we tested so far, so it receives the Hardware Secrets Golden Award. And we have to rethink our standards.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

car service

Why Is Fleet Maintenance Important?

If you have a fleet of vehicles you use within your business, it’s crucial you keep up with their

Playing Fifa on Play station 4

Tips for Recycling Your Gaming Consoles and Devices

These days, it seems like almost everybody is gaming. As great as this is, it’s also creating a

Business planning

How to Develop Your Venture Capital Business

Venture Capital (VC) is a type of private equity investment in which investors provide funding to

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact