• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

Hardware Secrets Power Supply Test Methodology

A complete description of the methodology used in our power supply reviews. Updated.

Home » Hardware Secrets Power Supply Test Methodology

Electrical Noise

Contents

  • 1. Introduction
  • 2. Load Tester
  • 3. Electrical Noise
  • 4. Efficiency Tests
  • 5. Temperature
  • 6. Pictures From The Test Bench
  • 7. Known “Flaws” in Our Methodology
  • 8. How Much We Have Invested so Far

The outputs of the power supply aren’t perfectly continuous. There is a small oscillation called ripple and on top of this oscillation we have some spikes, called noise. We need to see if ripple and noise are within specs: maximum of 120 mV for the 12V outputs and maximum of 50 mV for the 5V and 3.3 V outputs. These numbers are peak-to-peak voltages and the lower, the better. In fact we always like to see noise and ripple below half of these numbers. This is something that multimeters can’t detect and that is one of the several reasons why reviews based solely on multimeters are flawed. To measure ripple and noise we will use an oscilloscope.

Since ripple and noise aren’t in the range of MHz we can use a cheap PC-based oscilloscope, and in our case we bought a Stingray DS1M12 from USB Instruments. This equipment is simply an analog-to-digital converter (ADC) with a program that collects data sent by the ADC and plots a chart on the screen.

USB Instruments Stingray DS1M12Figure 4: Stingray PC-based oscilloscope.

Our load tester has a BNC connector for installing an oscilloscope, allowing us to monitor any one of the power supply outputs (there is a switch where we can choose which output we will monitor). During our tests we will monitor each power supply output for each load pattern. Whenever possible we will try to bring details of the noise level when the power supply was delivering its maximum power because it is usually under this scenario that we usually find the highest noise level.

In Figure 5, you can see an example of the output presented by the Stingray scope. Here we were monitoring noise from the +12 V output of a power supply and since we were using the 0.01 V/div scale (i.e., the distance between each horizontal line represents 0.01 V or 10 mV) the peak-to-peak voltage is a little bit above 20 mV, well under the maximum admissible noise – which is great, by the way. If you can’t see this the program tells you the peak-to-peak voltage, the RMS voltage and the frequency of the noise in a human-readable format (Figure 6).

NoiseFigure 5: Output from the oscilloscope.

ValuesFigure 6: Data measured by the oscilloscope program.

One final note. The ATX12V specification states that ripple and noise should be measured with a 0.1 µF ceramic capacitor and a 10 µF electrolytic capacitor attached to the oscilloscope probe. Our load tester has these capacitors behind its panel, so we don’t need to add them. This is another advantage of having a professional load tester.

Continue: Efficiency Tests

Power Articles

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

gigabit ethernet device

The Ultimate 2022 Guide on Gigabit Ethernet

Everything you need to know about Gigabit Ethernet.

spdif connection

What You Should Know About the SPDIF Connection (2022 Guide)

Learn about the digital audio connection called SPDIF and when and how to use it.

Everything You Need to Know About the CPU Power Management

The CPU has several power saving modes called C-states. In this tutorial we will explain what these modes are, what they do and the modes supported by each processor.

Understanding RAM Timings

Learn in detail what numbers like 7-7-7-21, 8-8-8-24, or 9-9-9-24 after the memory specification mean.

How to Connect Two PCs Using a USB to USB Cable in 2022

Learn how to connect two PCs using an USB-USB cable to transfer files and share your Internet connection.

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Follow Us

Follow us on Facebook Follow us on Twitter Follow us on Instagram

Copyright © 2022 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact