• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

Tagan TurboJet TG1100-U95 1,100 W Power Supply

TurboJet TG1100-U95 is a 1,100 W power supply from Tagan targeted for users with quad-SLI systems, with a terrific aesthetics. We completely disassembled this unit. Check it out.

Home » Tagan TurboJet TG1100-U95 1,100 W Power Supply

Secondary Analysis

Contents

  • 1. Introduction
  • 2. Introduction (Cont’d)
  • 3. Introduction (Cont’d)
  • 4. A Look Inside The TurboJet TG1100-U95
  • 5. Transient Filtering Stage
  • 6. Primary Analysis
  • 7. Secondary Analysis
  • 8. Power Distribution
  • 9. Main Specifications
  • 10. Conclusions

Even though this power supply has two transformers, the output of all +12 V rectifiers are connected together.

This power supply uses eight Schottky power rectifiers on its secondary, four 63CPQ100 (60 A at 153° C, 30 A per internal diode) and four 40CTQ045 (40 A at 116° C, 20 A per internal diode).

The +12 V output uses all the four 63CPQ100 Schottky rectifiers. Two of them are connected to one transformer and the other two are connected to the other transformer, however the outputs of all four rectifiers are connected together. The maximum theoretical current the +12 V line can deliver is given by the formula I / (1 – D), where D is the duty cycle used and I is the maximum current supported by the rectifying diode (which in this case is made by four 30 A diodes, two of them connected, in parallel, to the first transformer, and another two connected, in parallel, to the second transformer). Just as an exercise, we can assume a typical duty cycle of 30%. This would give us a maximum theoretical current of 171 A or 2,057 W for the +12 V output. The maximum current this line can really deliver will depend on other components, in particular the coil used. This output is clearly overspec’ed.

For the +5 V output two 40CTQ045 are used. The maximum theoretical current the +5 V line can deliver is given by the formula I / (1 – D), where D is the duty cycle used and I is the maximum current supported by the rectifying diode (which in this case is made by two 20 A diodes in parallel). Just as an exercise, we can assume a typical duty cycle of 30%. This would give us a maximum theoretical current of 57 A or 286 W for the +5 V output. The maximum current this line can really deliver will depend on other components, in particular the coil used.

The +3.3 V output also uses two 40CTQ045 Schottky rectifiers, connected to a dedicated transformer output, which is terrific. On the vast majority of power supplies even when the +3.3 V output has its own rectifiers, they are connected to the same transformer output as the +5 V line, so the transformer limits the maximum current (and thus power) the +5 V and +3.3 V lines can deliver together (a concept called “combined power”). Using the same math the +3.3 V output would be capable of delivering up to 189 W. Like we said before, the other components used on the power supply will limit the maximum current and power this output can actually deliver.

On the pictures below you can see the rectifiers used on this powe
r supply secondary.

Tagan TurboJet TG1100-U95 1,100 W Power SupplyFigure 24: Rectifiers used on the secondary.

Tagan TurboJet TG1100-U95 1,100 W Power SupplyFigure 25: Rectifiers used on the secondary.

In Figure 26, you can see the thermal sensor from this power supply, in charge of changing the speed of the fans according to the power supply internal temperature. Usually this component is found attached directly to the secondary heatsink or right below it, but on this power supply it is located inside the +12 V coil.

Tagan TurboJet TG1100-U95 1,100 W Power SupplyFigure 26: This power supply thermal sensor is located inside the +12 V coil.

Continue: Power Distribution

Power First Look

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

gigabit ethernet device

The Ultimate 2022 Guide on Gigabit Ethernet

Everything you need to know about Gigabit Ethernet.

spdif connection

What You Should Know About the SPDIF Connection (2022 Guide)

Learn about the digital audio connection called SPDIF and when and how to use it.

Everything You Need to Know About the CPU Power Management

The CPU has several power saving modes called C-states. In this tutorial we will explain what these modes are, what they do and the modes supported by each processor.

Understanding RAM Timings

Learn in detail what numbers like 7-7-7-21, 8-8-8-24, or 9-9-9-24 after the memory specification mean.

How to Connect Two PCs Using a USB to USB Cable in 2022

Learn how to connect two PCs using an USB-USB cable to transfer files and share your Internet connection.

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Follow Us

Follow us on Facebook Follow us on Twitter Follow us on Instagram

Copyright © 2022 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact