• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
Home » Thermalright True Spirit 120 CPU Cooler Review

Thermalright True Spirit 120 CPU Cooler Review

[nextpage title=”Introduction”]

Today we are testing the Thermalright True Spirit 120, a CPU cooler with a tower heatsink, four heatpipes and a 120 mm fan.

The True Spirit 120 box is small and simple, as you can see in Figure 1.

Thermalright True Spirit 120Figure 1: Package

Figure 2 shows the box contents: heatsink, fan, a small bag of thermal compound, manuals and installation hardware. It’s a shame that considering this cooler supports two fans, it doesn’t come with the wire clips necessary to hold the optional second fan.

Thermalright True Spirit 120Figure 2: Accessories

Figure 3 displays the True Spirit 120 heatsink.

Thermalright True Spirit 120Figure 3: The True Spirit 120 heatsink

This cooler is discussed in detail in the following pages.

[nextpage title=”The Thermalright True Spirit 120″]

Figure 4 illustrates the heatsink from the front. The heatpipes are positioned in two rows at each side.

Thermalright True Spirit 120Figure 4: Front view

Figure 5 reveals the side of the heatsink. Notice that the fins are bent up and down on the edges. The manufacturer claims this feature minimizes airflow resistance.

Thermalright True Spirit 120Figure 5: Side view

The top of the cooler is presented in Figure 6. Here you can see the tips of the heatpipes and the holes and hooks for installing the fans at both sides.

Thermalright True Spirit 120Figure 6: Top view

[nextpage title=”The Thermalright True Spirit 120 (Cont’d)”]

Figure 7 shows the base of the cooler, which looks perfectly mirrored.

Thermalright True Spirit 120Figure 7: Base

The 120 mm PWM fan is shown in Figure 8.

Thermalright True Spirit 120Figure 8: Fan

Figure 9 displays the True Spirit 120 with the fan installed.

Thermalright True Spirit 120Figure 9: Fan installed

[nextpage title=”Installation”]

Figure 10 reveals the installation parts that make a frame on the motherboard. The backplate (black part, with screws already installed) goes on the solder site of the motherboard. The thumbnuts (at the left) hold it in place, and the metal frame (at the right) is screwed over them. Figure 11 shows the frame installed on our motherboard.

Thermalright True Spirit 120Figure 10: Frame parts

Thermalright True Spirit 120Figure 11: Frame installed

After installing the frame, put the cooler over the CPU and hold it in place, screwing the transversal holder to the frame.

Thermalright True Spirit 120Figure 12: Heatsink installed

The last step is to install the fan, as shown in Figure 13.

Thermalright True Spirit 120Figure 13: Cooler installed

[nextpage title=”How We Tested”]

We tested the cooler with a Core i7-860 CPU (quad-core, 2.8 GHz), which is a socket LGA1156 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 3.3 GHz (150 MHz base clock and 22x multiplier), keeping the standard core voltage (Vcore), which was the maximum stable overclock we could make with the stock cooler. Keep in mind that we could have raised the CPU clock more, but to include the stock cooler in our comparison, we needed to use this moderate overclock.

We measured noise and temperature with the CPU idle and under full load. In order to get 100% CPU usage in all threads, we ran Prime 95 25.11 with the "In-place Large FFTs" option. (In this version, the software uses all available threads.)

We compared the tested cooler to the Intel stock cooler with a copper base (included with the CPU), as well as with other coolers. Note that in the past, we tested coolers with a socket LGA775 CPU, and we retested some "old" coolers with this new methodology. This means you can find different values in older reviews than the values you will read in the next page. Every cooler was tested with the thermal compound that accompanies it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings. During the tests, the left panel of the case was open.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed 4" (10 cm) from the fan. We turned off the case and video board cooler fans so they wouldn’t interfere with the results. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acoustically insula
ted room with no other noise sources, which isn’t the case here.

Hardware Configuration

  • Processor: Core i7-860
  • Motherboard: Gigabyte P55A-UD6
  • Memory: 2 GB Markvision (DDR3-1333/PC3-10700 with 9-9-9-22 timings), configured at 1,200 MHz
  • Hard disk: Seagate Barracuda XT 2 TB
  • Video card: Zotac GeForce GTS 250
  • Video resolution: 1680×1050
  • Video monitor: Samsung Syncmaster 2232BW Plus
  • Power supply: Seventeam ST-550P-AM
  • Case: 3RSystem L-1100 T.REX Cool

Operating System Configuration

  • Windows 7 Home Premium 64 bit SP1

Software Used

  • Prime95
  • SpeedFan

Error Margin

We adopted a 2 °C error margin, meaning temperature differences below 2 °C are considered irrelevant.

[nextpage title=”Our Tests”]

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at idle and at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the minimum speed on the idle test and at full speed on the full load test.

 

Idle Processor

Processor at Full Load

Cooler Room Temp. Noise Speed Core Temp. Noise Speed Core Temp.
Intel stock (socket LGA1156) 14 °C 44 dBA 1700 rpm 46 °C 54 dBA 2500 rpm 90 °C
Cooler Master Hyper TX3 G1 14 °C 47 dBA 2050 rpm 33 °C 56 dBA 2900 rpm 62 °C
Zalman CNPS10X Extreme 14 °C 45 dBA 1400 rpm 27 °C 53 dBA 1950 rpm 51 °C
Thermaltake Silent 1156 14 °C 44 dBA 1200 rpm 38 °C 49 dBA 1750 rpm 69 °C
Noctua NH-D14 14 °C 49 dBA 1250 rpm 27 °C 49 dBA 1250 rpm 53 °C
Zalman CNPS10X Performa 14 °C 46 dBA 1500 rpm 28 °C 52 dBA 1950 rpm 54 °C
Prolimatech Megahalems 14 °C 40 dBA 750 rpm 27 °C 60 dBA 2550 rpm 50 °C
Thermaltake Frio 14 °C 46 dBA 1450 rpm 27 °C 60 dBA 2500 rpm 50 °C
Prolimatech Samuel 17 14 °C 40 dBA 750 rpm 40 °C 60 dBA 2550 rpm 63 °C
Zalman CNPS8000A 18 °C 43 dBA 1400 rpm 39 °C 54 dBA 2500 rpm 70 °C
Spire TherMax Eclipse II 14 °C 55 dBA 2200 rpm 28 °C 55 dBA 2200 rpm 53 °C
Scythe Ninja3 17 °C 39 dBA 700 rpm 32 °C 55 dBA 1800 rpm 57 °C
Corsair A50 18 °C 52 dBA 1900 rpm 33 °C 52 dBA 1900 rpm 60 °C
Thermaltake Jing 18 °C 44 dBA 850 rpm 34 °C 49 dBA 1300 rpm 60 °C
GlacialTech Alaska 18 °C 43 dBA 1150 rpm 36 °C 51 dBA 1600 rpm 60 °C
Deepcool Gamer Storm 18 °C 43 dBA 1100 rpm 35 °C 48 dBA 1600 rpm 62 °C
Corsair A70 26 °C 56 dBA 1900 rpm 40 °C 56 dBA 1900 rpm 65 °C
Deepcool Ice Blade Pro 23 °C 45 dBA 1200 rpm 38 °C 52 dBA 1500 rpm 64 °C
AC Freezer 7 Pro Rev. 2 23 °C 47 dBA 1750 rpm 44 °C 51 dBA 2100 rpm 77 °C
Corsair H70 27 °C 60 dBA 1900 rpm 37 °C 60 dBA 1900 rpm 61 °C
Zalman CNPS9900 Max 27 °C 55 dBA 1600 rpm 38 °C 58 dBA 1750 rpm 63 °C
Arctic Cooling Freezer 11 LP 25 °C 45 dBA 1700 rpm 51 °C 49 dBA 1950 rpm 91 °C
CoolIT Vantage 26 °C 60 dBA 2500 rpm 37 °C 60 dBA 2500 rpm 62 °C
Deepcool Ice Matrix 600 25 °C 46 dBA 1100 rpm 41 °C 53 dBA 1300 rpm 69 °C
Titan Hati 26 °C 46 dBA 1500 rpm 40 °C 57 dBA 2450 rpm 68 °C
Arctic Cooling Freezer 13 27 °C 49 dBA 1950 rpm 41 °C 53 dBA 2300 rpm 70 °C
Noctua NH-C14 26 °C 52 dBA 1300 rpm 37 °C 52 dBA 1300 rpm 61 °C
Intel XTS100H 26 °C 49 dBA 1200 rpm 42 °C 64 dBA 2600 rpm 68 °C
Zalman CNPS5X SZ 23 °C 52 dBA 2250 rpm 38 °C 57 dBA 2950 rpm 69 °C
Thermaltake SlimX3 21 °C 50 dBA 2700 rpm 46 °C 50 dBA 2750 rpm 99 °C
Cooler Master Hyper 101 21 °C 50 dBA 2600 rpm 38 °C 57 dBA 3300 rpm 71 °C
Antec Kühler H2O 620 19 °C 52 dBA 1400 rpm 34 °C 55 dBA 1400 rpm 58 °C
Arctic Cooling Freezer 13 Pro 20 °C 46 dBA 1100 rpm 36 °C 49 dBA 1300 rpm 62 °C
GlacialTech Siberia 22 °C 49 dBA 1400 rpm 34 °C 49 dBA 1400 rpm 61 °C
Evercool Transformer 3 18 °C 46 dBA 1800 rpm 33 °C 51 dBA 2250 rpm 65 °C
Zalman CNPS11X Extreme 20 °C 51 dBA 1850 rpm 34 °C 56 dBA 2050 rpm 61 °C
Thermaltake Frio OCK 15 °C 44 dBA 1000 rpm 27 °C 64 dBA 2200 rpm 51 °C
Prolimatech Genesis 18 °C 49 dBA 1050 rpm 30 °C 49 dBA 1050 rpm 54 °C
Arctic Cooling Freezer XTREME Rev. 2 15 °C 41 dBA 1050 rpm 32 °C 44 dBA 1400 rpm 60 °C
NZXT HAVIK 140 16 °C 48 dBA 1250 rpm 29 °C 49 dBA 1250 rpm 55 °C
Antec Kühler H2O 920 18 °C 41 dBA 650 rpm 29 °C 64 dBA 2500 rpm 49 °C
Zalman CNP7X LED 18 °C 45 dBA 1950 rpm 33 °C 48 dBA 2150 rpm 58 °C
EVGA Superclock 14 °C 43 dBA 1300 rpm 27 °C 58 dBA 2350 rpm 47 °C
Evercool Transformer 4 15 °C 46 dBA 1500 rpm 26 °C 53 dBA 1950 rpm 52 °C
Xigmatek Dark Knight 18 °C 47 dBA 1700 rpm 30 °C 53 dBA 2150 rpm 57 °C
Xigmatek Aegir 15 °C 44 dBA 1500 rpm 27 °C 50 dBA 1950 rpm 52 °C
Cooler Master GeminII S524 16 °C 45 dBA 1300 rpm 29 °C 53 dBA 1800 rpm 58 °C
Enermax ETS-T40-TA 16 °C 40 dBA 1050 rpm 28 °C 48 dBA 1800 rpm 55 °C
Corsair H80 14 °C 42 dBA 2150 rpm 25 °C 52 dBA 2150 rpm 47 °C
Akasa Venom Voodoo 13 °C 40 dBA 1000 rpm 26 °C 48 dBA 1500 rpm 51 °C
Xigmatek Thor’s Hammer 15 °C 44 dBA 1500 rpm 30 °C 50 dBA 2000 rpm 55 °C
Cooler Master Hyper 612 PWM 19 °C 45 dBA 1400 rpm 30 °C 52 dBA 1900 rpm 54 °C
Xigmatek Loki 17 °C 44 dBA 1850 rpm 34 °C 55 dBA 2750 rpm 60 °C
Cooler Master Hyper 212 EVO 14 °C 44 dBA 1250 rpm 26 °C 50 dBA 1750 rpm 50 °C
Xigmatek Gaia 17 °C 44 dBA 1250 rpm 32 °C 46 dBA 1500 rpm 61 °C
Rosewill RCX-ZAIO-92 21 &de
g;C
48 dBA 2050 rpm 37 °C 54 dBA 2600 rpm 68 °C
Thermalright True Spirit 120 16 °C 41 dBA 1000 rpm 30 °C 46 dBA 1400 rpm 55 °C

In the graph below, at full load you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

Thermalright True Spirit 120

[nextpage title=”Main Specifications”]

The main specifications for the Thermalright True Spirit 120 cooler include:

  • Application: Sockets 775, 1155, 1156, 1366, AM2, AM2+, AM3, AM3+, and FM1 processors
  • Dimensions: 5.2 x 2.0 x 6.3 inches (133 x 52 x 160 mm) (W x L x H)
  • Fins: Aluminum
  • Base: Nickel-plated copper
  • Heat-pipes: Four 6-mm copper heatpipes
  • Fan: One 120 mm fan
  • Nominal fan speed: 1,500 rpm
  • Fan air flow: 66.5 cfm
  • Maximum power consumption: 2.5 W
  • Nominal noise level: 37.4 dBA
  • Weight: 1.26 lbs (570 g)
  • More information: https://www.thermalright.com
  • Average price in the US*: USD 30.00

* Researched at Nansgaminggear.com on the day we published this review.[nextpage title=”Conclusions”]

The Thermalright True Spirit 120 is an excellent CPU cooler. It presented good cooling performance with low noise, low weight and, best of all, low price. These characteristics place the True Spirit 120 among the best price/performance CPU coolers available today, earning our Silver Award.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

car service

Why Is Fleet Maintenance Important?

If you have a fleet of vehicles you use within your business, it’s crucial you keep up with their

Playing Fifa on Play station 4

Tips for Recycling Your Gaming Consoles and Devices

These days, it seems like almost everybody is gaming. As great as this is, it’s also creating a

Business planning

How to Develop Your Venture Capital Business

Venture Capital (VC) is a type of private equity investment in which investors provide funding to

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact