We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.

[nextpage title=”Introduction”]

The Titan Fenrir Siberia Edition is a huge CPU cooler with one horizontal heatsink with a 140 mm fan and a second heatsink equipped with a 120 mm fan. Let’s test it.

The Siberia (let’s just call it “Siberia” from now on) comes in a big cardboard box, as shown in Figure 1.

Titan Fenrir Siberia EditionFigure 1: Package

Figure 2 shows the contents of the box: heatsink, fans, a syringe of thermal compound, manual, and installation hardware. There is also a Y harness, which allows you to connect both fans on a single motherboard fan connector.

Titan Fenrir Siberia EditionFigure 2: Accessories

Figure 3 displays the Siberia heatsink.

Titan Fenrir Siberia EditionFigure 3: The Siberia heatsink

This cooler is discussed in detail in the following pages.

[nextpage title=”The Titan Fenrir Siberia Edition”]

Figure 4 illustrates the side of the heatsink. Here you can see the shape of the heatpipes.

Titan Fenrir Siberia EditionFigure 4: Side view

Figure 5 reveals the heatsink from the side of the horizontal heatsink. Notice the five thick 8 mm heatpipes.

Titan Fenrir Siberia EditionFigure 5: Side view

In Figure 6, you can see the tower heatsink side. The five heatpipes are distributed inside the heatsink.

Titan Fenrir Siberia EditionFigure 6: Side view

Figure 7 reveals the bottom of the cooler.

Titan Fenrir Siberia EditionFigure 7: Bottom view

[nextpage title=”The Titan Fenrir Siberia Edition (Cont’d)”]

Figure 8 reveals the top of the cooler.

Titan Fenrir Siberia EditionFigure 8: Top view

The base of the cooler is seen in Figure 9. It is made of pure copper and looks nicely polished.

Titan Fenrir Siberia EditionFigure 9: Base

Figure 10 shows the “Kukri” fans that come with the Siberia. As we mentioned before, the Siberia uses one 120 mm fan and one 140 mm fan. Both fans are PWM-compatible.

Titan Fenrir Siberia EditionFigure 10: Fans

In Figure 11, you can see how the Siberia looks with both fans installed.

Titan Fenrir Siberia EditionFigure 11: Fans installed

[nextpage title=”Installation”]

So far, so good. The Titan Siberia looks like an awesome CPU cooler. Then we installed it on our testbed computer  (as you see in Figures 12 and 13) with the backplate on the solder side of the motherboard and thumbscrews (and plastic washers) on the component side.

Titan Fenrir Siberia EditionFigure 12: Solder side

Titan Fenrir Siberia EditionFigure 13: Component side

We finished installing the cooler and powered up the computer. A few seconds later, the computer just powered off itself, along with the unpleasant smell of burned circuitry.

We checked the computer and, after some tests, concluded that the motherboard was dead. The reason was the poorly insulated backplate from the Titan, as you can see in Figure 14. This backplate is too big, and the black plastic insulators are too small, leaving the edges of the backplate uncovered. Unfortunately, we didn’t notice that the backplate was touching a small SMD component on the solder side of the motherboard.

Titan Fenrir Siberia EditionFigure 14: Backplate

As a result of that incorrectly designed piece, we had to buy a new motherboard and build a new computer for testing coolers and, since it is impossible to compare temperature results taken on two different setups, we had to reset our comparative chart. We retested some coolers, but it was impossible to retest all the models we already reviewed. Since we had to replace the motherboard, we decided to update our testbed. Its configuration is described in the next section of this review.

For testing the Siberia cooler on our new computer, we glued some insulating tape on the backplate before installing it. We also had to rotate it 90 degrees from its correct position, because it was still pressing some SMD components.

Figure 15 shows the Siberia installed on our new testing computer.

Titan Fenrir Siberia EditionFigure 15:
Cooler installed

[nextpage title=”How We Tested”]

We tested the cooler with a Core i5-2500K CPU (quad-core, 3.3 GHz), which is a socket LGA1155 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 4.0 GHz (100 MHz base clock and x40 multiplier), with 1.3 V core voltage (Vcore). This CPU was able to reach 4.8 GHz with its default core voltage, but at this setting, the processor enters thermal throttling when using mainstream coolers, reducing the clock and thus the thermal dissipation. This could interfere with the temperature readings, so we chose to maintain a moderate overclocking.

We measured noise and temperature with the CPU under full load. In order to get 100% CPU usage in all cores, we ran Prime 95 25.11 with the “In-place Large FFTs” option. (In this version, the software uses all available threads.)

We compared the tested cooler to other coolers we already tested. Note that the results cannot be compared to measures taken on a different hardware configuration, so we retested some “old” coolers with this new methodology. This means you can find different values in older reviews than the values you will read on the next page. Every cooler was tested with the thermal compound that comes with it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings.

During the tests, the panels of the computer case were closed. The front and rear case fans were spinning at minimum speed in order to simulate the “normal” cooler use on a well-ventilated case. We assume that is the common setup used by a cooling enthusiast or overclocker.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed near the top opening of the case. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acoustically insulated room with no other noise sources, which is not the case here.

Hardware Configuration

Operating System Configuration

  • Windows 7 Home Premium 64 bit SP1

Software Used

Error Margin

We adopted a 2°C error margin, meaning temperature differences below 2°C are considered irrelevant.

[nextpage title=”Our Tests”]

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the full speed.

Cooler Room Temp. Noise Speed Core Temp. Temp. Diff.
Cooler Master Hyper TX3 18 °C 50 dBA 2850 rpm 69 °C 51 °C
Corsair A70 23 °C 51 dBA 2000 rpm 66 °C 43 °C
Corsair H100 26 °C 62 dBA 2000 rpm 64 °C 38 °C
EVGA Superclock 26 °C 57 dBA 2550 rpm 67 °C 41 °C
NZXT HAVIK 140 20 °C 46 dBA 1250 rpm 65 °C 45 °C
Thermalright True Spirit 120 26 °C 42 dBA 1500 rpm 82 °C 56 °C
Zalman CNPS12X 26 °C 43 dBA 1200 rpm 71 °C 45 °C
Zalman CNPS9900 Max 20 °C 41 dBA 1700 rpm 62 °C 42 °C
Titan Fenrir Siberia Edition 22 °C 50 dBA 2400 rpm 65 °C 43 °C

In the graph below, at full load you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

Titan Fenrir Siberia Edition

[nextpage title=”Main Specifications”]

The main specifications for the Titan Fenrir Siberia Edition CPU cooler include:

  • Application: Sockets 775, 1155, 1156, 1366, 2011, AM2, AM2+, AM3, AM3+, and FM1 processors
  • Dimensions: 7.9  x 5.1 x 6.4 inches (200 x 130 x 162 mm) (W x L x H)
  • Fins: Aluminum
  • Base: Copper
  • Heat-pipes: Five 8-mm copper heatpipes
  • Fan: one 140 mm and one 120 mm
  • Nominal fan speed: 1,800 rpm (140 mm) and 2,200 rpm (120 mm)
  • Fan air flow: 89.42 cfm (140 mm) and 66.62 cfm (120 mm)
  • Maximum power consu
    mption: 4.8 W (140 mm) and 3.84 W (120 mm)
  • Nominal noise level: 28.8 dBA (140 mm) and 35 dBA (120 mm)
  • Weight: 5.2 lb (1.94 kg)
  • More information: https://www.titan-cd.com
  • MSRP in the U.S.: USD 80.00

[nextpage title=”Conclusions”]

The Titan Fenrir Siberia Edition is a good cooler, except for the terrible backplate that is a real danger to any computer. This backplate simply fried our old motherboard, forcing us to build a new computer for testing CPU coolers. This happened because Titan engineers didn’t take a little care in projecting better insulating for the product backplate. It seems like they ignored the fact that most motherboards have some SMD component on their solder side.

Except for the terrible backplate, the Siberia is a good cooler, with good cooling performance and a nice noise level. But we have no way to give an award for a product that cost us so much.