How We Tested
Contents
We tested the thermal compounds using the same testbed system that we currently use to test CPU coolers and thermal compounds, which is fully described below. Our Core i7-860 (quad-core, 2.8 GHz) CPU, which is a socket LGA1156 processor with a 95 W TDP (Thermal Design Power), was overclocked to 3.3 GHz (150 MHz base clock and 22x multiplier), and we kept the standard core voltage (Vcore).
We used a Zalman CNPS9900 MAX CPU cooler. The thermal compound we used was the Arctic Silver Céramique, which we tested some time ago. We chose this compound because of the large sample supply that we have, enough for making all the tests with the same thermal compound. Note that this thermal compound is very thick and viscous; therefore, a more fluid compound can behave differently.
Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings. During the tests, the left panel of the case was open.
Hardware Configuration
- Processor: Core i7-860
- CPU Cooler: Zalman CNPS9900 MAX
- Motherboard: Gigabyte P55A-UD6
- Memory: 2 GB Markvision (DDR3-1333/PC3-10700 with 9-9-9-22 timings), configured at 1,200 MHz
- Hard disk: Seagate Barracuda XT 2 TB
- Video card: Point of View GeForce GTX 460
- Power supply: Seventeam ST-550P-AM
- Case: 3RSystem L-1100 T.REX Cool
Operating System Configuration
- Windows 7 Home Premium 64 bit
Software Used
Error Margin
Since both room temperature and core temperature readings have 1 °C resolution, we adopted a 2 °C error margin, meaning temperature differences below 2 °C are considered irrelevant.