We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.

[nextpage title=”Introduction”]

The Corsair H80 is a sealed liquid cooling system, a.k.a. a watercooler. Let’s test it and see if it offers great performance.

Although it is sold with the Corsair brand, this product is actually manufactured in partnership with CoolIt Systems.

The H80 box is large and in dark colors, as you can see in Figure 1.

Corsair H80Figure 1: Package

Figure 2 reveals what comes in the box: the preassembled radiator-hoses-block-pump system, fans, manual, and installation hardware.

Corsair H80Figure 2: Accessories

This watercooler is discussed in detail in the following pages.

[nextpage title=”The Corsair H80″]

Figure 3 shows the main set of the H80. As with any sealed liquid cooling system, the block, radiator, hoses, and pump come preassembled, with the coolant liquid already inside. This means the system doesn’t need any maintenance.

Corsair H80Figure 3: The Corsair H80

Figures 4 and 5 reveal the radiator, which is responsible for dissipating the heat from the liquid to the air passing through it. This radiator supports two 120 mm fans and is intended to be installed at the rear panel of the computer case.

Corsair H80 CPU Cooler ReviewFigure 4: Radiator

Corsair H80Figure 5: Radiator

[nextpage title=”The Corsair H80 (Cont’d)”]

Figure 6 presents the CPU block, which transfers the heat from the processor to the liquid. As in other sealed systems, the pump that makes the liquid flow is integrated in the block.

The connector you see in the side of the block allows you to connect the H80 to the Corsair Link, a modular system that controls case cooling and lighting, and can be controlled via an USB port. This system must be purchased separately.

Figure 6 also shows the cables of the block: one four-pin standard peripheral power connector (“Molex”) that powers up the H80, and a single wire that must be connected to the motherboard, allowing it to sense the pump speed.

Corsair H80Figure 6: Block

In Figure 7, you see the connector for the two fans used by the H80, which controls them.

There is a button on the top of the block, used to switch between three operation modes, where the fans are set at minimum, medium or high speed. The lights on the block indicate which speed it is by displaying one (minimum), two (medium), or three (high) lights.

Corsair H80Figure 7: Block

The copper base of the block is shown in Figure 8. It comes with preapplied thermal compound.

Corsair H80Figure 8: Base

Figure 9 shows the twin 120 mm fans that come with the Corsair H80.

Corsair H80Figure 9: Fans

[nextpage title=”Installation”]

Figure 10 shows the backplate to be used with Intel CPUs at the left. In AMD systems, the block is installed using the existing motherboard frame, using the clips shown at the right.

Corsair H80Figure 10: Intel backplate and AMD clips

To install the H80 on our CPU, first we installed the backplate on the solder side of the motherboard, holding it in place with the thumbscrews shown in Figure 11.

Corsair H80Figure 11: Holders installed

Then, we put the block over the CPU, holding it with four thumbnuts. After that, the radiator was installed on the rear panel of the case, as shown in Figure 12.

Corsair H80Figure 12: CPU cooler installed

[nextpage title=”How We Tested”]

We tested the cooler with a Core i7-860 CPU (quad-core, 2.8 GHz), which is a socket LGA1156 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 3.3 GHz (150 MHz base clock and 22x multiplier), keeping the standard core voltage (Vcore), which was the maximum stable overclock we could make with the stock cooler. Keep in mind that we could have raised the CPU clock more, but to include the stock cooler in our comparison, we needed to use this moderate overclock.

We measured noise and temperature with the CPU idle and under full load. In order to get 100% CPU usage in all threads, we ran Prime 95 25.11 with the "In-place Large FFTs" option. (In this version, the software uses all available threads.)

We compared the tested cooler to the Intel stock cooler with a copper base (included with the CPU), as well as with other coolers. Note that in the past, we tested coolers with a socket LGA775 CPU, and we retested some "old" coolers with this new methodology. This means you can find different values in older reviews than the values you will read in the next page. Every cooler was tested with the thermal compound that accompanies it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings. During the tests, the left panel of the case was open.

The sound pressure level (SPL) was measured with
a digital noise meter, with its sensor placed 4" (10 cm) from the fan. We turned off the case and video board cooler fans so they wouldn’t interfere with the results. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acoustically insulated room with no other noise sources, which isn’t the case here.

Hardware Configuration

Operating System Configuration

  • Windows 7 Home Premium 64 bit SP1

Software Used

Error Margin

We adopted a 2 °C error margin, meaning temperature differences below 2 °C are considered irrelevant.

[nextpage title=”Our Tests”]

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at idle and at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the minimum speed on the idle test and at full speed on the full load test.

 

Idle Processor

Processor at Full Load

Cooler Room Temp. Noise Speed Core Temp. Noise Speed Core Temp.
Intel stock (socket LGA1156) 14 °C 44 dBA 1700 rpm 46 °C 54 dBA 2500 rpm 90 °C
Cooler Master Hyper TX3 G1 14 °C 47 dBA 2050 rpm 33 °C 56 dBA 2900 rpm 62 °C
Zalman CNPS10X Extreme 14 °C 45 dBA 1400 rpm 27 °C 53 dBA 1950 rpm 51 °C
Thermaltake Silent 1156 14 °C 44 dBA 1200 rpm 38 °C 49 dBA 1750 rpm 69 °C
Noctua NH-D14 14 °C 49 dBA 1250 rpm 27 °C 49 dBA 1250 rpm 53 °C
Zalman CNPS10X Performa 14 °C 46 dBA 1500 rpm 28 °C 52 dBA 1950 rpm 54 °C
Prolimatech Megahalems 14 °C 40 dBA 750 rpm 27 °C 60 dBA 2550 rpm 50 °C
Thermaltake Frio 14 °C 46 dBA 1450 rpm 27 °C 60 dBA 2500 rpm 50 °C
Prolimatech Samuel 17 14 °C 40 dBA 750 rpm 40 °C 60 dBA 2550 rpm 63 °C
Zalman CNPS8000A 18 °C 43 dBA 1400 rpm 39 °C 54 dBA 2500 rpm 70 °C
Spire TherMax Eclipse II 14 °C 55 dBA 2200 rpm 28 °C 55 dBA 2200 rpm 53 °C
Scythe Ninja3 17 °C 39 dBA 700 rpm 32 °C 55 dBA 1800 rpm 57 °C
Corsair A50 18 °C 52 dBA 1900 rpm 33 °C 52 dBA 1900 rpm 60 °C
Thermaltake Jing

18 °C 44 dBA 850 rpm 34 °C 49 dBA 1300 rpm 60 °C
GlacialTech Alaska 18 °C 43 dBA 1150 rpm 36 °C 51 dBA 1600 rpm 60 °C
Deepcool Gamer Storm 18 °C 43 dBA 1100 rpm 35 °C 48 dBA 1600 rpm 62 °C
Corsair A70 26 °C 56 dBA 1900 rpm 40 °C 56 dBA 1900 rpm 65 °C
Deepcool Ice Blade Pro 23 °C 45 dBA 1200 rpm 38 °C 52 dBA 1500 rpm 64 °C
AC Freezer 7 Pro Rev. 2 23 °C 47 dBA 1750 rpm 44 °C 51 dBA 2100 rpm 77 °C
Corsair H70 27 °C 60 dBA 1900 rpm 37 °C 60 dBA 1900 rpm 61 °C
Zalman CNPS9900 Max 27 °C 55 dBA 1600 rpm 38 °C 58 dBA 1750 rpm 63 °C
Arctic Cooling Freezer 11 LP 25 °C 45 dBA 1700 rpm 51 °C 49 dBA 1950 rpm 91 °C
CoolIT Vantage 26 °C 60 dBA 2500 rpm 37 °C 60 dBA 2500 rpm 62 °C
Deepcool Ice Matrix 600 25 °C 46 dBA 1100 rpm 41 °C 53 dBA 1300 rpm 69 °C
Titan Hati 26 °C 46 dBA 1500 rpm 40 °C 57 dBA 2450 rpm 68 °C
Arctic Cooling Freezer 13 27 °C 49 dBA 1950 rpm 41 °C 53 dBA 2300 rpm 70 °C
Noctua NH-C14 26 °C 52 dBA 1300 rpm 37 °C 52 dBA 1300 rpm 61 °C
Intel XTS100H 26 °C 49 dBA 1200 rpm 42 °C 64 dBA 2600 rpm 68 °C
Zalman CNPS5X SZ 23 °C 52 dBA 2250 rpm 38 °C 57 dBA 2950 rpm 69 °C
Thermaltake SlimX3 21 °C 50 dBA 2700 rpm 46 °C 50 dBA 2750 rpm 99 °C
Cooler Master Hyper 101 21 °C 50 dBA 2600 rpm 38 °C 57 dBA 3300 rpm 71 °C
Antec Kühler H2O 620 19 °C 52 dBA 1400 rpm 34 °C 55 dBA 1400 rpm 58 °C
Arctic Cooling Freezer 13 Pro 20 °C 46 dBA 1100 rpm 36 °C 49 dBA 1300 rpm 62 °C
GlacialTech Siberia 22 °C 49 dBA 1400 rpm 34 °C 49 dBA 1400 rpm

61 °C
Evercool Transformer 3 18 °C 46 dBA 1800 rpm 33 °C 51 dBA 2250 rpm 65 °C
Zalman CNPS11X Extreme 20 °C 51 dBA 1850 rpm 34 °C 56 dBA 2050 rpm 61 °C
Thermaltake Frio OCK 15 °C 44 dBA 1000 rpm 27 °C 64 dBA 2200 rpm 51 °C
Prolimatech Genesis 18 °C 49 dBA 1050 rpm 30 °C 49 dBA 1050 rpm 54 °C
Arctic Cooling Freezer XTREME Rev. 2 15 °C 41 dBA 1050 rpm 32 °C 44 dBA 1400 rpm 60 °C
NZXT HAVIK 140 16 °C 48 dBA 1250 rpm 29 °C 49 dBA 1250 rpm 55 °C
Antec Kühler H2O 920 18 °C 41 dBA 650 rpm 29 °C 64 dBA 2500 rpm 49 °C
Zalman CNP7X LED 18 °C 45 dBA 1950 rpm 33 °C 48 dBA 2150 rpm 58 °C
EVGA Superclock 14 °C 43 dBA 1300 rpm 27 °C 58 dBA 2350 rpm 47 °C
Evercool Transformer 4 15 °C 46 dBA 1500 rpm 26 °C 53 dBA 1950 rpm 52 °C
Xigmatek Dark Knight 18 °C 47 dBA 1700 rpm 30 °C 53 dBA 2150 rpm 57 °C
Xigmatek Aegir 15 °C 44 dBA 1500 rpm 27 °C 50 dBA 1950 rpm 52 °C
Cooler Master GeminII S524 16 °C 45 dBA 1300 rpm 29 °C 53 dBA 1800 rpm 58 °C
Enermax ETS-T40-TA 16 °C 40 dBA 1050 rpm 28 °C 48 dBA 1800 rpm 55 °C
Corsair H80 14 °C 42 dBA 2150 rpm 25 °C 52 dBA 2150 rpm 47 °C

In the graph below, at full load you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

 Corsair H80

[nextpage title=”Main Specifications”]

The main specifications for the Corsair H80 CPU cooler include:

  • Application: Sockets 775, 1155, 1156, 1366, 2011, AM2, AM2+, AM3, AM3+, and FM1 processors
  • Radiator Dimensions: 4.7 x 1.5 x 6.0 inches (120 x 38 x 152 mm) (W x L x H)
  • Block height: 1.6 inches (40 mm)
  • Fins: Aluminum
  • Base: Copper
  • Heat-pipes: None
  • Fan: Two, 120 mm
  • Nominal fan speed: 2,500 rpm
  • Fan air flow: 92 cfm
  • Maximum power consumption: 2 x 4.2 W
  • Nominal noise level: 39 dBA
  • Weight: 2.2 lbs (1 kg)
  • Extra features: Corsair Link connector
  • More information: https://www.corsair.com
  • Average Price in the US*: USD 92.00

* Researched at Newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

The Corsair H80 is a great liquid cooling solution. It reached one of the best performances we saw on all air coolers and sealed watercoolers that we tested so far. It is also not too loud, maintaining the noise at an acceptable level even at full speed.

It’s a pity we couldn’t test it with the Corsair Link companion system, which can monitor and control the H80 by software.

Because its high cooling performance, the Corsair H80 liquid cooling system deserves the Hardware Secrets Golden Award.