• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

Everything You Need to Know About Power Supply Protections

In this tutorial we are going to present an in-depth explanation on how all the main power supply protections really work.

Home » Everything You Need to Know About Power Supply Protections

Other Protections

Contents

  • 1. Introduction
  • 2. Power Good
  • 3. Under and Over Voltage Protections (UVP and OVP)
  • 4. Over Current Protection (OCP)
  • 5. Over Temperature Protection (OTP)
  • 6. Other Protections
  • 7. Comparison Between Monitoring Integrated Circuits

Over Power/Load Protection (OPP/OLP)

Over Power Protection (OPP) and Over Load Protection (OLP) are two different names for the same thing. This is an optional protection that shuts down the power supply in the case the unit starts delivering more power than a configured trigger point.

On low-end power supplies based on the half-bridge topology this protection is performed by the PWM controller integrated circuit – as long as it supports it, of course. On power supplies with active PFC circuit, this protection is implemented on the PFC controller.

In both cases what the circuit is really monitoring the total current pulled by the power supply from the power grid. If it increases above a certain value, the protection kicks in, shutting down the power supply.

Short-Circuit Protection (SCP)

Short-circuit protection is probably the oldest form of protection available, being very easy to implement (it is usual
ly implemented outside the monitoring integrated circuit using a couple of transistors). This is a required protection that will shut down the power supply in the case of any output to “short-circuit,” i.e., to touch the ground line (black wire), either accidentally or in case a component from the computer somehow burns.

No-Load Operation (NLO)

No-load operation is a required protection that allows the power supply to turn on and work correctly even if there is no load on its outputs. This is not exactly a “protection” like the ones we’ve seen so far, but more like a design requirement.

Continue: Comparison Between Monitoring Integrated Circuits

Power Tutorials

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

audio connectors on a motherboard (right) and ethernet + usb connectors (left)

How On-Board Audio Works

Learn how the sound card that comes embedded on your motherboard works.

How To Connect Your PC to Your Home Stereo or Home Theater

Learn how to hook your PC to your stereo or receiver in order to enhance you audio experience while playing games, watching videos, listening to music or even editing audio.

motherboard

Which is the best motherboard for Coffee Lake CPUs?

We compared seven different motherboards for Intel eighth-gen (Coffee Lake) CPUs, to help you to choose which one is the best for you. Check it out!

RAM Install

Does more RAM make difference in gaming performance?

Does installing more RAM in your computer improves gaming performance? We tested some recent games with 4 GiB, 8 GiB, and 16 GiB to find out. Check it out!

How to Refill Epson Cartridges

Learn how to reset the Epson cartridge chip, allowing you to refill the cartridge.

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • Everything You Need to Know About the SPDIF Connection
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU C-States Power Saving Modes

Follow Us

Follow us on Facebook Follow us on Twitter Follow us on Instagram

Copyright © 2022 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact