• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
Home » Gelid Tranquillo CPU Cooler Review

Gelid Tranquillo CPU Cooler Review

[nextpage title=”Introduction”]

Today we are going to test Tranquillo from Gelid, a CPU cooler with a tower design, four U-shape heatpipes, one 120 mm fan and focused on silence. This cooler has identical specs to Noctua NH-U12P, Thermaltake ISGC-300 and 3R System iCEAGE Prima Boss, which we have already tested and have performed nicely. Will Tranquillo perform well too? Check it out!

In Figure 1, you can see the cooler box, in light card paper, with white, gray and green shades.

Gelid TranquilloFigure 1: Box.

In Figure 2, you can see the box contents: heatsink, fan (not installed), instruction folder, a tube of gray thermal compound and installation hardware.

Gelid TranquilloFigure 2: Box contents.

In next pages we will analise the cooler in details.

[nextpage title=”Gelid Tranquillo”]

In Figure 3, you can see the front side of the heatsink. The fins are firm and with a good gap between them. We can also notice a small auxiliary heatsink on top of the base.

Gelid TranquilloFigure 3: Front view.

On the cooler side the fins are folded in order to avoid the air to escape – so the air pushed by the fan passes entirely by the heatsink. In Figure 4 you can also see how the heatpipes are very close to each other at the base level.

Gelid TranquilloFigure 4: Side view.

In Figure 5, you can see the back of the heatsink. You can notice that the heatpipes are not in the same row, thus allowing cool air to better reach them.

Gelid TranquilloFigure 5: Rear view.

In a top view (Figure 6) you can see the position of the heatpipes. The plastic piece aparently has only aesthetics purpose, because it doesn’t cover the tips of the heatpipes. There is support for only one fan. Note how the fins are not "plain": they have a small rugosity, which causes a little turbulence on the airflow, helping the heat transfer process.

Gelid TranquilloFigure 6: Top view.

[nextpage title=”Gelid Tranquillo (Cont’d)”]

The heatpipes don’t touch the CPU directly: the cooler uses a copper base. This base is polished, with a near-mirrored surface.

Gelid TranquilloFigure 7: Base.

In Figure 8, you can see the fan that comes with the cooler, with white blades and a black frame. It has PWM automatic speed control, an thus its connector is a four-pin type. An amazing detail is that the wires are covered by a plastic mesh cover, giving a good aspect to the product.

Gelid TranquilloFigure 8: Fan.

In Figure 8 you see the cooler with the fan installed. It is attached using two metal wire clips.

Gelid TranquilloFigure 9: Fan installed.

[nextpage title=”Installation”]

The installation system used in Tranquillo is relatively simple and very effective. For AMD processors, you just need to screw two clips to the base and then fasten them to the motherboard frame. For Intel CPUs, however, you must screw two clips to the base of the cooler (In Figure 10 you see the socket LGA775 clips in place), put the respective backplate on the solder side of the motherboard, put the cooler over the CPU and attach it using four spring thumbscrews.

Gelid TranquilloFigure 10: Support for socket LGA775.

In Figure 11, you can see the cooler installed on our motherboard and, in Figure 12, inside our case. A detail you must consider when installing this cooler is that you must install the fan only after fastening the cooler to the motherboard, otherwise you will have trouble acessing the thumbscrews that hold the cooler in place.

Gelid TranquilloFigure 11: Installed on the motherboard.

Gelid TranquilloFigure 12: Installed in our case.

[nextpage title=”How We Tested”]

We are adopting the following methodology for our CPU cooler reviews.

First, we chose the CPU with the highest TDP (Thermal Design Power) we had available, a Core 2 Extreme QX6850, which has a 130 W TDP. The choice for a CPU with a high TDP is obvious. To measure the efficiency of the tested cooler, we need a processor that gets very hot. This CPU works by default at 3.0 GHz, but we overcloc
ked it to 3.33 GHz, in order to heat it as much as possible.

We took noise and temperature measurements with the CPU idle and under full load. In order to achieve 100% CPU load on the four processing cores we ran Prime95 with the "In-place Large FFTs" option, and three instances of the StressCPU program, all at the same time.

We also compared the reviewed cooler to the Intel stock cooler (with copper base), which comes with the processor we used, and also with some other coolers we have tested using the same methodology.

Temperature measurements were taken with a digital thermometer, with the sensor touching the base of the cooler, and also with the core temperature reading (given by the CPU thermal sensor) from the from the SpeedFan program, using an arithmetic average of the four core temperature readings.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed 4" (10 cm) from the fan. We turned off the video board cooler so it wouldn’t interfere with the results, but this measurement is only for comparative purposes, because a precise SPL measurement needs to be made inside an acoustically insulated room with no other noise sources, which is not the case here.

Hardware Configuration

  • Processor: Core 2 Extreme QX6850
  • Motherboard: Gigabyte EP45-UD3L
  • Memory: 4 GB G.Skill F2-6400CL5S-2GBNY (DDR2-800/PC2-6400 with 5-5-5-15 timings), configured at 800 MHz
  • Hard drive: 1 TB Seagate Barracuda 7200.12 (ST31000528AS, SATA-300, 7200 rpm, 32 MB buffer)
  • Video card: PNY Verto Geforce 9600 GT
  • Video resolution: 1680×1050
  • Video monitor: Samsung Syncmaster 2232BW Plus
  • Power supply required: Seventeam ST-550P-AM
  • Case: 3RSystem K100

Software Configuration

  • Windows 7 Home Premium 64 bit

Software Used

  • Prime95
  • StressCPU
  • SpeedFan

Error Margin

We adopted a 2 °C error margin, i.e., temperature differences below 2 °C are considered irrelevant.

[nextpage title=”Our Tests”]

On the tables below you can see our results. We ran the same tests with the coolers shown on below tables. Each test ran with the CPU idle and the with the CPU fully loaded. On BigTyp 14Pro, TMG IA1, NH-U12P and ISGC-300 the tests were done with the fan at full speed and at minimum speed. The other coolers were connected directly to the motherboard and it controls the fan speed based on CPU load level and temperature on PWM models. ISGC-400, iCEAGE Prima Boss, Megahalems Rev. B, Thermaltake SpinQ VT, Zalman CNPS10X Flex and Tuniq Tower 120 Extreme were tested at minimum speed on idle test and at maximum speed on full load test.

CPU Idle

Cooler Room Temp. Noise Fan Speed Base Temp. Core Temp.
Intel stock 14 °C 44 dBA 1000 rpm 31 °C 42 °C
BigTyp 14Pro (min) 17 °C 47 dBA 880 rpm 29 °C 36 °C
BigTyp 14Pro (max) 17 °C 59 dBA 1500 rpm 26 °C 34 °C
Akasa Nero 18 °C 41 dBA 500 rpm 26 °C 35 °C
Cooler Master V10 14 °C 44 dBA 1200 rpm 21 °C 26 °C
TMG IA1 (max) 16 °C 47 dBA 1500 rpm 22 °C 30 °C
TMG IA1 (min) 16 °C 57 dBA 2250 rpm 21 °C 30 °C
Zalman CNPS10X Extreme 16 °C 44 dBA 1200 rpm 21 °C 29 °C
Thermaltake ISGC-100 18 °C 44 dBA 1450 rpm 35 °C 49 °C
Noctua NH-U12P (low) 15 °C 42 dBA 1000 rpm 20 °C 30 °C
Noctua NH-U12P 15 °C 46 dBA 1400 rpm 20 °C 28 °C
Noctua NH-C12P 17 °C 46 dBA 1400 rpm 23 °C 28 °C
Thermaltake ISGC-200 21 °C 43 dBA 1100 rpm 31 °C 35 °C
Schythe Kabuto 22 °C 42 dBA 800 rpm 29 °C 34 °C
Arctic Cooling Alpine 11 Pro 20 °C 43 dBA 1500 rpm 32 °C 39 °C
ISGC-300 (min) 18 °C 42 dBA 800 rpm 26 °C 30 °C
ISGC-300 (max) 18 °C 46 dBA 1400 rpm 24 °C 26 °C
SilverStone NT06-E 21 °C 66 dBA 2600 rpm 30 °C 41 °C
Zalman CNPS9700 NT 22 °C 48 dBA 1700 rpm 28 °C 35 °C
Scythe Mugen-2 17 °C 41 dBA 700 rpm 25 °C 30 °C
ISGC-400 (min) 17 °C 44 dBA 850 rpm 24 °C 30 °C
Cooler Master Vortex 752 20 °C 48 dBA 1700 rpm 32 °C 44 °C
iCEAGE Prima Boss (min) 22 °C 42 dBA 1000 rpm 29 °C 36 °C
Evercool Buffalo 17 °C 51 dBA 1850 rpm 22 °C 29 °C
Scythe Big Shuriken 20 °C 42 dBA 900 rpm 31 °C 39 °C
Cooler Master Hyper TX3 21 °C 44 dBA 1700 rpm 30 °C 39 °C
Titan Skalli 20 °C 43 dBA 1200 rpm 27 °C 34 °C
Prolimatech Megahalems Rev. B 21 °C 40 dBA 800 rpm 28 °C 32 °C
Zalman CNPS9900 NT 23 °C 45 dBA 900 rpm 30 °C 34 °C
Cooler Master Hyper N620 21 °C 44 dBA 1200 rpm 28 °C 34 °C
Nexus LOW-7000 R2 23 °C 46 dBA 1400 rpm 33 °C 42 °C
Evercool HPK-10025EA 20 °C 54 dBA 1900 rpm 27 °C 34 °C
Evercool HPH-9525EA 23 °C 50 dBA 1900 rpm 38 °C 49 °C
iCEAGE Prima Boss II 23 °C 42 dBA 1000 rpm 29 °C 35 °C
Thermaltake SpinQ VT 24 °C 45 dBA 950 rpm 32 °C 39 °C
Titan Fenrir 21 °C 42 dBA 950 rpm 29 °C 35 °C
Zalman CNPS 10 Flex 23 °C 40 dBA 800 rpm 32 °C 39 °C
Tuniq Tower 120 Extreme 24 °C 43 dBA 1100 rpm 30 °C 37 °C
Gelid Tranquillo 22 °C 41 dBA 850 rpm 29 °C 36 °C

CPU Fully Loaded

Cooler Room Temp. Noise Fan Speed Base Temp. Core Temp.
Intel stock 14 °C 48 dBA 1740 rpm 42 °C 100 °C
BigTyp 14Pro (min) 17 °C 47 dBA 880 rpm 43 °C 77 °C
BigTyp 14Pro (max) 17 °C 59 dBA 1500 rpm 35 °C 70 °C
Akasa Nero 18 °C 48 dBA 1500 rpm 34 °C 68 °C
Cooler Master V10 14 °C 54 dBA 1900 rpm 24 °C 52 °C
TMG IA1 (max) 16 °C 47 dBA 1500 rpm 27 °C 63 °C
TMG IA1 (min) 16 °C 57 dBA 2250 rpm 25 °C 60 °C
Zalman CNPS10X Extreme 16 °C 51 dBA 1900 rpm 24 °C 50 °C
Thermaltake ISG-100 18 °C 50 dBA 1800 rpm 58 °C 93 °C
Noctua NH-U12P (low) 15 °C 42 dBA 1000 rpm 28 °C 59 °C
Noctua NH-U12P 15 °C 46 dBA 1400 rpm 25 °C 54 °C
Noctua NH-C12P 17 °C 46 dBA 1400 rpm 37 °C 76 °C
Thermaltake ISGC-200 21 °C 48 dBA 1900 rpm 42 °C 68 °C
Scythe Kabuto 22 °C 47 dBA 1200 rpm 38 °C 63 °C
Arctic Cooling Alpine 11 Pro 20 °C 51 dBA 2300 rpm 49 °C 85 °C
ISGC-300 (min) 18 °C 42 dBA 800 rpm 36 °C 64 °C
ISGC-300 (max) 18 °C 46 dBA 1400 rpm 31 °C 56 °C
SilverStone NT06-E 21 °C 66 dBA 2600 rpm 39 °C 96 °C
Zalman CNPS9700 NT 22 °C 56 dBA 2600 rpm 34 °C 63 °C
Scythe Mugen-2 17 °C 46 dBA 1300 rpm 28 °C 54 °C
ISGC-400 (max) 17 °C 47 dBA 1400 rpm 36 °C 69 °C
Cooler Master Vortex 752 20 °C 55 dBA 2300 rpm 48 °C 92 °C
iCEAGE Prima Boss (max) 22 °C 53 dBA 2000 rpm 35 °C 59 °C
Evercool Buffalo 17 °C 51 dBA 1850 rpm 32 °C 67 °C
Scythe Big Shuriken 20 °C 50 dBA 1500 rpm 51 °C 85 °C
Cooler Master Hyper TX3 21 °C 53 dBA 2700 rpm 39 °C 66 °C
Titan Skalli 20 °C 47 dBA 1550 rpm 37 °C 69 °C
Prolimatech Megahalems Rev. B 21 °C 61 dBA 2600 rpm 30 °C 51 °C
Zalman CNPS9900 NT 23 °C 56 dBA 2000 rpm 34 °C 54 °C
Cooler Master Hyper N620 21 °C 50 dBA 1650 rpm 32 °C 56 °C
Nexus LOW-7000 R2 23 °C 53 dBA 1900 rpm 45 °C 74 °C
Evercool HPK-10025EA 20 °C 54 dBA 1900 rpm 39 °C 69 °C
Evercool HPH-9525EA 23 °C 50 dBA 1900 rpm 58 °C 100 °C
iCEAGE Prima Boss II 23 °C 56 dBA 2100 rpm 32 °C 56 °C
Thermaltake SpinQ VT 24 °C 52 dBA 1500 rpm 40 °C 68 °C
Titan Fenrir 21 °C 50 dBA 1600 rpm 33 °C 58 °C
Zalman CNPS 10 Flex 23 °C 61 dBA 2600 rpm 33 °C 59 °C
Tuniq Tower 120 Extreme 24 °C 56 dBA 1900 rpm 35 °C 60 °C
Gelid Tranquillo 22 °C 46 dBA 1450 rpm 31 °C 60 °C

The next graph shows how many degrees Celsius the CPU core was hotter than room temperature during our idle tests.

Gelid Tranquillo

The next graph gives you an idea on how many degrees Celsius the CPU core was hotter than room temperature during our full load tests.

 Gelid Tranquillo

[nextpage title=”Main Specifications”]

Gelid Tranquillo main features are:

  • Application: Socket LGA775, 1156, 1366, AM3, AM2+, AM2, 940, 939 and 754 processors.
  • Fins: Aluminum.
  • Base: Copper.
  • Heat-pipes: Four U-shaped copper heat-pipes.
  • Fan: 120 mm.
  • Nominal fan speed: 1,500 rpm.
  • Fan air flow: 58 cfm.
  • Maximum power consumption: 2.16 W.
  • Nominal noise level: 25.5 dBA.
  • Weight: 1.4 lbs (645 g).
  • More information: https://www.gelidsolutions.com
  • Average price in the US*: USD 40.00

* Researched at newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

At first look, Gelid Tranquillo gave us a déjà vu feeling, because it uses a design very similar to other coolers we tested, like Noctua NH-U12P, Thermaltake ISGC-300 and 3R System iCEAGE Prima Boss. The good news is that almost all the coolers with this design achieved a good performance in our tests and Tranquillo was not an exception: its performance was compatible to some of the best coolers we tested so far.

The better news is the fact that Tranquillo was one of the quietest coolers we’ve seen (better said, heard) so far. With the CPU idle it is virtually inaudible, as the hard disk spinning noise is far more intense than the noise level produced by the cooler. Even under full load it keeps a low noise level, justifying its name ("tranquillo" means "calm" in Italian).

Another added advantage is its price: it costs less than most coolers with similar performance. Considering that its installation is simple and solid, the only point where Tranquillo does not shines is on the looks, because it has no nickel-plated fins, LED fan our other aesthetic pluses, but in a general way the result is a beautiful and harmonious looks.

In other words: Tranquillo is an excellent cooler, with good performance, quiet, easy to install, beautiful and relatively inexpensive. So, it receives the Hardware Secrets Golden Award.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

car service

Why Is Fleet Maintenance Important?

If you have a fleet of vehicles you use within your business, it’s crucial you keep up with their

Playing Fifa on Play station 4

Tips for Recycling Your Gaming Consoles and Devices

These days, it seems like almost everybody is gaming. As great as this is, it’s also creating a

Business planning

How to Develop Your Venture Capital Business

Venture Capital (VC) is a type of private equity investment in which investors provide funding to

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact