• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
Home » Noctua NH-U12P CPU Cooler Review

Noctua NH-U12P CPU Cooler Review

[nextpage title=”Introduction”]

Continuing our CPU cooler review series, today we tested Noctua NH-U12P, which uses the now standard tower design with four U-shaped heatpipes and a 120 mm fan. Will its performance be compatible to its price? Let’s see!

A detail you must keep in mind with this cooler is the fact it supports only Intel socket LGA775 and AMD sockets AM3, AM2+ and AM2 processors. For Intel socket LGA1366 CPUs there is another model, U12P-SE1366, which besides being compatible with this socket comes with two fans instead of just one. If you want to use U12P with older AMD processors (sockets 939 or 754) Noctua offers a kit with the compatible clips.

U12P’s box is nice and strong, and from a front window we can see part of its brown fan.

Noctua NH-U12PFigure 1: Box.

Inside the box we found the heatsink, the fan (that doesn’t come installed to the cooler), three plastic bags with installation hardware, an NT-H1 thermal compound tube, a Phillips screwdriver and a user manual. This manual is actually made by two folders, one explaining installation on AMD CPUs and another for Intel CPUs. There is also two adapters for connecting the fan to the motherboard, about which we will talk about later.

Noctua NH-U12PFigure 2: Box contents.

The general aspect of the U12P heatsink is excellent. The fins are thick, which gives a solid constitution to the cooler. The copper base and heatpipes and the aluminum fins are nickel-plated with a golden brown aspect.

Noctua NH-U12PFigure 3: Noctua NH-U12P heatsink.
On Figures 4 and 5 you can have a better idea of how the U12P heatsink looks like.

Noctua NH-U12PFigure 4: Side view.

Noctua NH-U12PFigure 5: Front view.

[nextpage title=”Introduction (Cont’d)”]

Looking the heatsink from above we can have an idea of the shape of the fins and we can see the tips from the four U-shaped heatpipes. An amazing detail about this cooler is the fact it supports two fans, one at each side. Even though it comes with only one fan it comes with two extra clips and you can easily install another 120 mm fan on it.

Noctua NH-U12PFigure 6: Top view.

The base of the cooler is very smooth, but it doesn’t have a mirror finishing.

Noctua NH-U12PFigure 7: Base.

The fan that comes with the reviewed cooler is different from the ones we are used to see, first by the use of two shades of brown, and second by the shape of the blades, with two "teeth" on the air release edge, as you can see in Figure 8. According to the manufacturer, these recesses spread the turbulence caused by the blades, reducing noise level.
Noctua NH-U12PFigure 8: Fan.

This fan uses a miniature three-pin connector, with no PWM control. Noctua included two adapters that you can see in Figure 9, named "Low Noise Adaptor" (L.N.A.) and "Ultra Low Noise Adaptor" (U.L.N.A.). These adapters are simply resistors connected in series with the fan positive wire, so the fan receives a lower voltage and spins at a lower speed. We can’t say it’s an advanced noise reduction technology, can we?
Noctua NH-U12PFigure 9: Fan speed reducers.

[nextpage title=”Installation”]

U12P installation is not simple. We will show step-by-step how we installed it on our socket LGA775 CPU, but  installation on AMD CPUs is pretty much alike, just using other parts in order to fit the different hole positioning.

First of all you must screw two tabs on the cooler base, as you can see in Figure 10.

Noctua NH-U12PFigure 10: Tabs screwed on the base.

Before putting the fan in place you must stick two silicon strips (shown in Figure 11) on the heatsink, which help reducing noise by absorbing vibrations.

Noctua NH-U12PFigure 11: Silicon strips.

Installing the fan on the he
atsink is very easy, you just need to put it in place and then fasten two wire clips that hold it.

Noctua NH-U12PFigure 12: Fan installed.

The next step is installing the cooler holder on the motherboard. In Figure 13, you can see the required hardware for socket LGA775, one metal plate that stays under the motherboard and two clips installed on component side. Clips for AMD processors are similar. In both cases it is necessary to remove the motheboard from the chassis, unless your case gives access to the bottom of the motherboard through a window cut on the motherboard tray.

Noctua NH-U12PFigure 13: Motherboard clips.

[nextpage title=”Installation (Cont’d)”]

In Figure 14, you can see how the clips look like after installed on the motherboard. Four silicon washers must be installed on the points the upper clip touches the motherboard, avoiding damage to it when the screws are tightened. You can install the clips longitudinally or transversally, i.e., you can rotate the cooler 90 degrees if needed.

Noctua NH-U12PFigure 14: Clips installed on the motherboard.

After installing the holder, you just need to apply thermal paste on the CPU, put the cooler in place and tighten two inner-thread screws that will fasten the tabs to the holding clips. These screws use small springs to make sure that everything will be firm.

Noctua NH-U12PFigure 15: Cooler screwed to the holder.

Installed on the motherboard we can have an idea of the size from this cooler. It didn’t interfere with any component on our motherboard, but if your chipset heatsink is too high you may face some challenge installing this cooler.

Noctua NH-U12PFigure 16: Installed on the motherboard.

In Figure 17, you can see how it looks inside our case. As any other tower design cooler, it will not fit SFF cases.

Noctua NH-U12PFigure 17: Installed.

[nextpage title=”How We Tested”]

We are adopting the following metodology on our CPU cooler reviews.

First, we chose the CPU with the highest TDP (Thermal Design Power) we had available, a Core 2 Extreme QX6850, which has a 130 W TDP. The choice for a CPU with a high TDP is obvious: as we want to measure how efficient is the tested cooler, we need a processor that gets very hot. This CPU works by default at 3.0 GHz, but we overclocked it to 3.33 GHz, in order to heat it as much as possible.

We took noise and temperature measurements with the CPU idle and under full load. In order to achieve 100% CPU load on the four processing cores we ran at the same time Prime95 in "In-place Large FFTs" option and three instances of StressCPU program.

We also compared the reviewed cooler to Intel stock cooler (with copper base), which comes with the processor we used, and also with some other coolers we have tested using the same methodology.

Temperature measurements were taken with a digital thermometer, with the sensor touching the base of the cooler, and also with the core temperature reading (given by the CPU thermal sensor) from SpeedFan program. For this measurement we used an arithmetic average of the four core temperature readings.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed 4" (10 cm) from the fan. We turned off the video board cooler so it wouldn’t interfere with the results, but this measurement is only for comparative purposes, because a precise SPL measurement needs to be done inside an acoustically insulated room with no other noise sources, what we do not have.

Hardware Configuration

  • Processor: Core 2 Extreme QX6850
  • Motherboard: Gigabyte EP45-UD3L
  • Memory: 2 GB Corsair XMS2 DHX TWIN2X2048-6400C4DHX G (DDR2-800/PC2-6400 with timings 4-4-4-12), running at 800 MHz
  • Hard drive: 500 GB Seagate Barracuda 7200.11 (ST3500320AS, SATA-300, 7200 rpm, 32 MB buffer)
  • Video card: PNY Verto Geforce 9600 GT
  • Video resolution: 1680×1050
  • Video monitor: Samsung Syncmaster 2232BW Plus
  • Power supply required: Seventeam ST-550P-AM
  • Case: 3RSystem K100

Software Configuration

  • Windows XP Professional installed on FAT32 partition
  • Service Pack 3
  • Intel Inf driver version: 8.3.1.1009
  • NVIDIA video driver version: 182.08

Software Used

  • Prime95
  • StressCPU
  • SpeedFan

Error Margin

We adopted a 2 °C error margin, i.e., temperature differences below 2 °C are considered irrelevant.

[nextpage title=”Our Tests”]

On the tables below you can see our results. We ran the same tests with Intel stock cooler, Thermaltake BigTyp 14Pro, Akasa Nero, Cooler Master V10, Thermaltake TMG IA1, Zalman CNPS10X Extreme, Thermaltake ISGC-100 and Noctua NH-U12P. Each test ran with the CPU idle and the with the CPU fully loaded. On BigTyp 14Pro and TMG IA1 the tests were done with the fan at full speed and at minimum speed. On Noctua NH-U12P we tested using the fan speed reducing device (U.L.N.A.) and then tested again with the fan connected directly to the motherboard (full speed). With Intel stock cooler, Akasa Nero, V10, Zalman CNPS10X Extreme and Thermaltake ISGC-100 the motherboard controls the fan speed based on CPU load level and tempe
rature.

CPU Idle

Cooler Room Temp. Noise Fan Speed Base Temp. Core Temp.
Intel stock 14 °C 44 dBA 1000 rpm 31 °C 42 °C
BigTyp 14Pro (min. speed) 17 °C 47 dBA 880 rpm 29 °C 36 °C
BigTyp 14Pro (max. speed) 17 °C 59 dBA 1500 rpm 26 °C 34 °C
Akasa Nero 18 °C 41 dBA 500 rpm 26 °C 35 oC
Cooler Master V10 14 °C 44 dBA 1200 rpm 21 °C 26 °C
TMG IA1 (max. speed) 16 °C 47 dBA 1500 rpm 22 °C 30 °C
TMG IA1 (min. speed) 16 °C 57 dBA 2250 rpm 21 °C 30 °C
Zalman CNPS10X Extreme 16 °C 44 dBA 1200 rpm 21 °C 29 °C
Thermaltake ISGC-100 18 °C 44 dBA 1450 rpm 35 °C 49 °C
Noctua NH-U12P (low speed) 15 °C 42 dBA 1000 rpm 20 °C 30 °C
Noctua NH-U12P 15 °C 46 dBA 1400 rpm 20 °C 28 °C

CPU Fully Loaded

Cooler Room Temp.

Noise

Fan Speed Base Temp. Core Temp.
Intel stock 14 °C 48 dBA 1740 rpm 42 °C 100 °C
BigTyp 14Pro (min. speed) 17 °C 47 dBA 880 rpm 43 °C 77 °C
BigTyp 14Pro (max. speed) 17 °C 59 dBA 1500 rpm 35 °C 70 °C
Akasa Nero 18 °C 48 dBA 1500 rpm 34 °C 68 °C
Cooler Master V10 14 °C 54 dBA 1900 rpm 24 °C 52 °C
TMG IA1 (max. speed) 16 °C 47 dBA 1500 rpm 27 °C 63 °C
TMG IA1 (min. speed) 16 °C 57 dBA 2250 rpm 25 °C 60 °C
Zalman CNPS10X Extreme 16 °C 51 dBA 1900 rpm 24 °C 50 °C
Thermaltake ISG-100 18 °C 50 dBA 1800 rpm 58 °C 93 °C
Noctua NH-U12P (low speed) 15 °C 42 dBA 1000 rpm 28 °C 59 °C
Noctua NH-U12P 15 °C 46 dBA 1400 rpm 25 °C 54 °C

On the graph below you can see the temperature difference between the cooler base and the room temperature with the CPU idle and fully loaded. Values shown are in Celsius degrees. Remember that the lower the number the better is cooling performance.

Noctua NH-U12P

On the next graph you can have an idea on how many Celsius degrees was CPU core hotter than room temperature during the tests.

 Noctua NH-U12P

[nextpage title=”Main Specifications”]

Noctua NH-U12P main features are:

  • Application: Socket LGA775, AM3, AM2+ and AM2 processors.
  • Fins: Aluminum.
  • Base: Copper.
  • Heat-pipes: Four "U" shape copper heat-pipes.
  • Fan: 120 mm.
  • Nominal fan speed: 1,300 rpm.
  • Fan air flow: 92.3 m3/h.
  • Maximum power consumption: 1.08 W.
  • Nominal noise level: 19.8 dBA.
  • Weight: 1.7 lbs (770 g).
  • More information: https://www.noctua.at
  • Average price in the US*: USD 58.00

* Researched at Newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

Noctua NH-U12P is a CPU cooler with excellent performance, being also very quiet. Its performance was compatible to some of the best coolers we tested, like Thermaltake TMG-IA1, and does not keep it behind even to Cooler Master V10. In terms of noise level, it was also one of the quietest in our recent reviews.

Its general looks is also very cool, with its solid aspect and robustness notewhorty. Its fins are thicker than in most cooler, and they are not sharp. In few words: it is a high quality cooler.

The difficult installation can be seen as a problem, but the system developed by Noctua keeps the cooler very steady, without bending or forcing the motherboard. Once installed this system allows you to remove the cooler (for cleaning, for example) and put it back in place with relative ease.

The only real problem we found was the fan rotation speed controlling system. Actually, there is no such system: the adapters that come with the cooler make it to look like it was "mickey moused". The fan itselft is a very good one, silent and strong, but would be better if it had a PWM speed control, allowing the motherboard to adjust the fan speed, reducing it when the CPU is idle and increasing it when more cooling power is needed.

U12P is not an inexpensive cooler, but its price is comparable to its competitors. So, if you are looking for a well-made CPU cooler, quiet and with excellent performance but don’t want an advanced fan control system (or will use it with a fan controller), Noctua NH-U12P is a nice buy.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

car service

Why Is Fleet Maintenance Important?

If you have a fleet of vehicles you use within your business, it’s crucial you keep up with their

Playing Fifa on Play station 4

Tips for Recycling Your Gaming Consoles and Devices

These days, it seems like almost everybody is gaming. As great as this is, it’s also creating a

Business planning

How to Develop Your Venture Capital Business

Venture Capital (VC) is a type of private equity investment in which investors provide funding to

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact