We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.

[nextpage title=”Introduction”]

The new GreenMe power supply series from In Win has 550 W, 650 W, and 750 W versions, all with the 80 Plus Bronze certification. In a very different move, In Win committed to donate USD 1.00 to the World Wildlife Foundation (WWF) for every GreenMe unit sold. We’ve already reviewed the 750 W version; let’s now see if the 650 W model is a good buy.

In Win GreenMe 650WFigure 1: In Win GreenMe 650 W power supply

In Win GreenMe 650WFigure 2: In Win GreenMe 650 W power supply

The In Win GreenMe 650 W is 5.5” (140 mm) deep, using a 120 mm ball bearing fan on its bottom (ADDA AD1212LB-A70GL).

In Win GreenMe 650WFigure 3: Fan

The reviewed power supply doesn’t have a modular cabling system. All cables are protected with nylon sleeves that come from inside the unit. This power supply comes with the following cables:

  • Main motherboard cable with a 20/24-pin connector, 19.7” (50 cm) long
  • One cable with two ATX12V connectors that together form an EPS12V connector, 19.7” (50 cm) long
  • Two cables, each with one six/eight-pin connector for video cards, 19.7” (50 cm) long
  • Two cables, each with three SATA power connectors, 19.7” (50 cm) to the first connector, 5.9” (15 cm) between connectors
  • One cable with three standard peripheral power connectors and one floppy disk drive power connector, 18.9” (48 cm) to the first connector, 5.9” (15 cm) between connectors

All wires are 18 AWG, which is the minimum recommended gauge. This is the exact same configuration used with the 750 W model, and it is adequate for a 650 W power supply. 

In Win GreenMe 650WFigure 4: Cables

Let’s now take an in-depth look inside this power supply.

[nextpage title=”A Look Inside the In Win GreenMe 650 W”]

We decided to disassemble this power supply to see what it looks like inside, how it is designed, and what components are used. Please read our “Anatomy of Switching Power Supplies” tutorial to understand how a power supply works and to compare this power supply to others.

On this page we will have an overall look, and then in the following pages we will discuss in detail the quality and ratings of the components used.

In Win GreenMe 650WFigure 5: Top view

In Win GreenMe 650WFigure 6: Front quarter view

In Win GreenMe 650WFigure 7: Rear quarter view

In Win GreenMe 650WFigure 8: The printed circuit board

[nextpage title=”Transient Filtering Stage”]

As we have mentioned in other articles and reviews, the first place we look when opening a power supply for a hint about its quality, is its filtering stage. The recommended components for this stage are two ferrite coils, two ceramic capacitors (Y capacitors, usually blue), one metalized polyester capacitor (X capacitor), and one MOV (Metal-Oxide Varistor). Very low-end power supplies use fewer components, usually removing the MOV and the first coil. 

In the transient filtering stage, this power supply is flawless, with one X capacitor more than the minimum required, and with two additional Y capacitors and one additional X capacitor after the rectifying bridge.

In Win GreenMe 650WFigure 9: Transient filtering stage (part 1)

In Win GreenMe 650WFigure 10: Transient filtering stage (part 2)

On the next page, we will have a more detailed discussion about the components used in the In Win GreenMe 650 W.

[nextpage title=”Primary Analysis”]

On this page we will take an in-depth look at the primary stage of the In Win GreenMe 650 W. For a better understanding, please read our “Anatomy of Switching Power Supplies” tutorial.

This power supply uses two GBU605 rectifying bridges, which are attached to the same heatsink as the active PFC and switch transistors. Each bridge supports up to 6 A at 100° C. So, in theory, you would be able to pull up to 1,380 W from a 115 V power grid. Assuming 80% efficiency, the bridges would allow this unit to deliver up to 1,104 W without burning themselves out. Of course, we are only talking about these particular components. The real limit will depend on all the components combined in this power supply. The 750 W model uses two 8 A bridges here.

In Win GreenMe 650WFigure 11: Rectifying bridges

The active PFC circuit uses two TK20J50D MOSFETs, each supporting up to 20 A at 25° C in continuous mode or 80 A at 25° C in pulse mode. (Unfortunately, the manufacturer doesn’t state the current limits at 100° C.) These transistors present a maximum 270 mΩ resistance when turned on, a characteristic called RDS(on). The lower the number the better, meaning that the transistor will waste less power, and the power supply will have a higher efficiency. The 750 W model uses different transistors here.

The output of the active PFC circuit is filtered by one 390 µF x 420 V Japanese electrolytic capacitor, from Matsushita (Panasonic), labeled at 105° C.

In Win GreenMe 650WFigure 12:  Capacitor

In the switching section, two TK15J50D MOSFETs are employed using the traditional two-transistor forward configuration. Each of these transistors supports up to 15 A at 25° C in continuous mode or up to 60 A at 25° C in pulse mode, with a maximum RDS(on) of 400 mΩ. Unfortunately, the manufacturer doesn’t publish the current limits at 100° C. The 750 W model uses more powerful transistors here.

In Win GreenMe 650WFigure 14: Active PFC/PWM combo controller

Let’s now take a look at the secondary of this power supply.

[nextpage title=”Secondary Analysis”]

The In Win GreenMe 650 W uses a DC-DC design in its secondary. This means that the power supply is basically a +12 V unit, with the +5 V and +3.3 V outputs produced by two smaller power supplies connected to the main +12 V rail. This design is used to increase efficiency.

The maximum theoretical current that each line can deliver is given by the formula I / (1 – D) where D is the duty cycle used and I is the maximum current supported by the rectifying diode. As an exercise, we can assume a duty cycle of 30 percent.

The +12 V output uses four MBR4060PT Schottky rectifiers, each supporting up to 40 A (20 A per internal diode at 125° C with a 0.80 V maximum voltage drop). This gives us a maximum theoretical current of 114 A or 1,371 W for the +12 V output. However, keep in mind that the +5 V and the +3.3 V outputs are generated from the +12 V output. The 750 W model uses different rectifiers, but with the same current limits.

In Win GreenMe 650WFigure 15: Two of the four +12 V rectifiers and the +5VSB rectifier

As explained, the +5 V and +3.3 V outputs are produced by two DC-DC converters. Each is located on a small daughterboard soldered to the main printed circuit board. In Figures 16 and 17, you can see the physical aspect of one of these converters. Each is controlled by a uP3872B integrated circuit, using two QM3004D (marked “M3004D”) and two QM3016D (marked “M3016D”) MOSFETs. Each QM3004D supports up to 55 A at 25° C or 40 A at 100° C in continuous mode or up to 110 A at 25° C in pulse mode, with an RDS(on) of 8.5 mΩ, while each QM3016D supports up to 96 A at 25° C or 68 A at 100° C in continuous mode or up to 192 A at 25° C in pulse mode, with an RDS(on) of 4 mΩ.

In Win GreenMe 650WFigure 16: One of the DC-DC converters

In Win GreenMe 650WFigure 17: One of the DC-DC converters

This power supply uses a WT7579 monitoring integrated circuit. This chip supports over voltage (OVP), under voltage (UVP), over current (OCP), and over temperature (OTP) protections. There are four +12 V over current protection (OCP) channels, matching the number of +12 V rails advertised by the manufacturer.

In Win GreenMe 650WFigure 18: Monitoring circuit

The electrolytic capacitors that filter the outputs are from Samxon and labeled at 105° C, as usual. See Figure 19.

In Win GreenMe 650WFigure 19: Secondary capacitors

[nextpage title=”Power Distribution”]

In Figure 20, you can see the power supply label containing all the power specs.

In Win GreenMe 650WFigure 20: Power supply label

This power supply is advertised as having four +12 V rails, which is correct, since the monitoring integrated circuit has four +12 V over current protection (OCP) channels, and we clearly saw four current sensors (“shunts”) on the solder side of the printed circuit board. See Figure 21. Click here to understand more about this subject.

In Win GreenMe 650WFigure 21: Shunts

The four +12 V rails are distributed as follows:

  • +12V1 (solid yellow wires): The main motherboard cable and the peripheral and SATA connectors
  • +12V2 (yellow/black wires): The ATX12V/EPS12V connector
  • +12V3 (yellow/blue wires): One of the video card power connectors
  • +12V4 (yellow/green wires): The other video card power connector

This distribution is perfect.

How much power can this unit really deliver? Let’s find out.

[nextpage title=”Load Tests”]

We conducted several tests with this power supply
, as described in the article, “Hardware Secrets Power Supply Test Methodology.” 

First we tested this power supply with five different load patterns, trying to pull around 20%, 40%, 60%, 80%, and 100% of its labeled maximum capacity (actual percentage used listed under “% Max Load”), watching the behavior of the reviewed unit under each load. In the table below, we list the load patterns we used and the results for each load.

If you add all the powers listed for each test, you may find a different value than what is posted under “Total” below. Since each output can have a slight variation (e.g., the +5 V output working at +5.10 V), the actual total amount of power being delivered is slightly different than the calculated value. In the “Total” row, we are using the real amount of power being delivered, as measured by our load tester.

The +12VA and +12VB inputs listed below are the two +12 V independent inputs from our load tester. During this test, the +12VA input was connected to the power supply +12V1 and +12V3 rails, while the +12VB input was connected to the power supply +12V2 rail.

Input Test 1 Test 2 Test 3 Test 4 Test 5
+12VA 5 A (60 W) 10 A (120 W) 14.5 A (174 W) 19 A (228 W) 23.5 A (282 W)
+12VB 5 A (60 W) 10 A (120 W) 14 A (168 W) 19 A (228 W) 23.5 A (282 W)
+5 V 1 A (5 W) 2 A (10 W) 4 A (20 W) 6 A (30 W) 8 A (40 W)
+3.3 V 1 A (3.3 W) 2 A (6.6 W) 4 A (13.2 W) 6 A (19.8 W) 8 A (26.4 W)
+5VSB 1 A (5 W) 1.5 A (7.5 W) 2 A (10 W) 2.5 A (12.5 W) 3 A (15 W)
-12 V 0.5 A (6 W) 0.5 A (6 W) 0.5 A (6 W) 0.5 A (6 W) 0.5 A (6 W)
Total 141.0 W 272.8 W 393.4 W 524.8 W 648.9 W
% Max Load 21.7% 42.0% 60.5% 80.7% 99.8%
Room Temp. 45.3° C 45.2° C 45.1° C 46.8° C 49.8° C
PSU Temp. 42.0° C 42.7° C 43.1° C 44.0° C 45.8° C
Voltage Regulation Pass Pass Pass Pass Pass
Ripple and Noise Pass Pass Pass Pass Pass
AC Power 164.5 W 314.1 W 458.8 W 624.6 W 793.0 W
Efficiency 85.7% 86.9% 85.7% 84.0% 81.8%
AC Voltage 116.6 V 115.1 V 114.4 V 113.1 V 110.7 V
Power Factor 0.957 0.966 0.978 0.984 0.998
Final Result Pass Pass Pass Pass Pass

On our tests, the In Win GreenMe 650 W presented efficiency between 81.8% and 86.9%, matching the 80 Plus Bronze certification, which promises a minimum efficiency of 82% at light (i.e., 20%) and full loads, and 85% at typical (i.e., 50%) load.

Voltage regulation was good, with all voltages closer to their nominal values (3% regulation) during the first four tests. During test five, the +5 V output went outside this tighter range, at +4.80 V, but was still inside the allowed zone. The ATX12V specification states that positive voltages must be within 5% of their nominal values, and negative voltages must be within 10% of their nominal values.

Let’s discuss the ripple and noise levels on the next page.

[nextpage title=”Ripple and Noise Tests”]

Voltages at the power supply outputs must be as “clean” as possible, with no noise or oscillation (also known as “ripple”). The maximum ripple and noise levels allowed are 120 mV for +12 V and -12 V outputs, and 50 mV for +5 V, +3.3 V and +5VSB outputs. All values are peak-to-peak figures. We consider a power supply as being top-notch if it can produce half or less of the maximum allowed ripple and noise levels.

The In Win GreenMe 650 W provided low ripple and noise levels. In fact, the results for this power supply were much better than the ones achieved by the 750 W model.

Input Test 1 Test 2 Test 3 Test 4 Test 5
+12VA 14.0 mV 17.4 mV 18.6 mV 30.2 mV 48.8 mV
+12VB 14.8 mV 18.4 mV 18.8 mV 31.8 mV 47.4 mV
+5 V 16.8 mV 18.2 mV 18.2 mV 19.4 mV 19.2 mV
+3.3 V 11.4 mV 12.4 mV 12.8 mV 13.8 mV 14.8 mV
+5VSB 8.8 mV 13.8 mV 14.8 mV 14.8 mV 15.6 mV
-12 V 34.4 mV 40.4 mV 39.6 mV 45.8 mV 52.6 mV

Below you can see the waveforms of the outputs during test five.

In Win GreenMe 650 W Power Supply ReviewFigure 22: +12VA input from load tester during test five at 648.9 W (48.8 mV)

In Win GreenMe 650WFigure 23: +12VB input from load tester during test five at 648.9 W (47.4 mV)

In Win GreenMe 650WFigure 24: +5V rail during test five at 648.9 W (19.2 mV)

In Win GreenMe 650WFigure 25: +3.3 V rail during test five at 648.9 W (14.8 mV)

[nextpage title=”Overload Tests”]

Below you can see the maximum we could pull from this power supply. The objective of this test is to see if the power supply has its protection circuits working properly. This unit passed this test, since it shut down when we tried to pull more than what is listed below. During this test, the +5 V and -12 V outputs presented voltages outside the tighter 3% regulation we always want to see, at +4.78 V and -12.37 V, but they were still inside the allowed range. Noise and ripple levels were still low (around 58 mV at +12 V).

Input Overload Test
+12VA 28 A (336 W)
+12VB 28 A (336 W)
+5 V 12 A (60 W)
+3.3 V 12 A (39.6 W)
+5VSB 3 A (15 W)
-12 V 0.5 A (6 W)
Total 784.6 W
% Max Load 120.7%
Room Temp. 45.0° C
PSU Temp. 48.4° C
AC Power 999.0 W
Efficiency 78.5%
AC Voltage 107.7 V
Power Factor 0.991

[nextpage title=”Main Specifications”]

The main specifications for the In Win GreenMe 650 W power supply include:

  • Standards: ATX12V 2.31 and EPS12V 2.92
  • Nominal labeled power: 650 W
  • Measured maximum power: 784.6 W at 45° C
  • Labeled efficiency: 80% Plus Bronze certification, 82% minimum at light (i.e., 20%) and full loads, and 85% minimum at typical (i.e., 50%) load
  • Measured efficiency: Between 81.8% and 86.9%, at 115 V (nominal, see complete results for actual voltage)
  • Active PFC: Yes
  • Modular Cabling System: No
  • Motherboard Power Connectors: One 20/24-pin connector and two ATX12V connectors that together form an EPS12V connector
  • Video Card Power Connectors: Two six/eight-pin connectors on separate cables
  • SATA Power Connectors: Six on two cables
  • Peripheral Power Connectors: Three on one cable
  • Floppy Disk Drive Power Connectors: One
  • Protections (as listed by the manufacturer): Over voltage (OVP), under voltage (UVP), over current (OCP), over power (OPP), and short-circuit (SCP)
  • Are the above protections really available? Yes.
  • Warranty: Three years
  • More Information: https://www.inwin-style.com
  • Average Price in the U.S.*: USD 78.00

* Researched at Newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

We were really surprised by the In Win GreenMe 650 W, since it achieved much better results than the 750 W version of the same series. It seems the 750 W model was pushing the limits of the GreenMe platform, which seems to be optimized for the 500 W-650 W range.

Efficiency was between 81.8% and 86.9%, noise and ripple levels stayed low all the time, and voltages were closer to their nominal values than required (3% regulation) most of the time. The cable configuration is adequate for a 650 W product. Best of all is its price, only USD 78, which makes the In Win GreenMe 650 W a winner for the user looking for a good mainstream power supply.