• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

NZXT HALE90-850-M Power Supply Review

NZXT has just released an 80 Plus Gold power supply series, called the HALE90. Let’s see how their 850 W model fared in our tests.

Home » NZXT HALE90-850-M Power Supply Review

Secondary Analysis

Contents

  • 1. Introduction
  • 2. A Look Inside The NZXT HALE90-850-M
  • 3. Transient Filtering Stage
  • 4. Primary Analysis
  • 5. Secondary Analysis
  • 6. Power Distribution
  • 7. Load Tests
  • 8. Overload Tests
  • 9. Main Specifications
  • 10. Conclusions

This power supply uses a synchronous design in its secondary, meaning that the Schottky rectifiers were replaced by MOSFET transistors in order to increase efficiency. On top of that, this unit uses a DC-DC design, meaning that this unit is basically a +12 V power supply, with the +5 V and +3.3 V outputs being generated by two small power supplies attached to the +12 V output.

The +12 V output is generated by six IPP040N06N3 MOSFETs, each one capable of handling up to 90 A at 100° C in continuous mode, or up to 360 A at 25° C in pulse mode, with an RDS(on) of only 3.7 mΩ. In this power supply the +12 V output is also used to generate the +5 V and the +3.3 V outputs, as you know. As an exercise, if we assume that all load was exclusively pulled from the +12 V output, we would have a maximum theoretical current limit of 386 A or 4,629 W.

NZXT HALE90-850-M power supplyFigure 14: +12 V transistors

Usually power supplies that use DC-DC converters in the secondary to generate the +5 V and +3.3 V outputs have two separate printed circuit boards, one for each output. The NZXT HALE90-850-M, however, has a single printed board hosting both circuits.

Each converter is based on one NCP1587A PWM controller and four ME70N03S MOSFETs, each one with a current limit of 62 A at 25° C or 50 A at 70° C in continuous mode, or up to 100 A at 25° C in pulse mode, with a maximum RDS(on) of 11 mΩ.

NZXT HALE90-850-M power supplyFigure 15: The DC-DC converter

NZXT HALE90-850-M power supplyFigure 16: The DC-DC converter

We didn’t see an integrated circuit for monitoring the power supply outputs, and since the Power Good wire and sensors were connected to the small printed circuit board where the resonant controller was attached to, our best guess is that the
enigmatic SF29601 controller with the aid of four operational amplifiers provided by an LM324 integrated circuit do the trick.

The electrolytic capacitors available in the secondary are also from Chemi-Con and labeled at 105° C.

Continue: Power Distribution

Power Reviews

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

How to Avoid Scams on Facebook Marketplace Once and For All

Social media scams generate more than 770 million US dollars in losses in the US alone, and it’s … [Read More...] about How to Avoid Scams on Facebook Marketplace Once and For All

AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

AMD, together with Intel, is one of the major processor manufacturers known in today's market. … [Read More...] about AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

Valorant Phoenix Tips & Tricks You Have to Know

The Phoenix character in Valorant is one of the most amazing to play. Being aggressive, Phoenix will … [Read More...] about Valorant Phoenix Tips & Tricks You Have to Know

Footer

For Performance

  • About
  • Contact
  • Articles
  • Editorials
  • First Look
  • Reviews
  • Tutorials
  • Privacy

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact