[nextpage title=”Introduction”]

Let’s test the Phanteks PH-TC14PE, a CPU cooler with twin tower heatsinks, five heatpipes and two 140 mm fans. Check it out!

Just like the PH-TC14CS, which we tested recently, the PH-TC14PE comes in different models: the standard one with white fans, plus red (PH-TC14CS_RD), black (PH-TC14CS_BK), orange (PH-TC14CS_OR), and blue (PH-TC14CS_BL, which is the model we are testing) models, where the heatsink fins and the fan blades come in the respective colors.

The box of the PH-TC14PE is shown in Figure 1.

Phanteks PH-TC14PEFigure 1: Package

Figure 2 shows the contents of the box: the cooler heatsink, fans, a syringe of thermal compound, manual, and installation hardware.

Phanteks PH-TC14PEFigure 2: Accessories

Figure 3 displays the heatsink of the Phanteks PH-TC14PE.

Phanteks PH-TC14PEFigure 3: The PH-TC14PE heatsink

This cooler is discussed in detail in the following pages.

[nextpage title=”The Phanteks PH-TC14PE”]

Figure 4 illustrates the front of the cooler. The five heatpipes are distributed side-by-side in the heatsink.

Phanteks PH-TC14PEFigure 4: Front view

Figure 5 reveals the side of the cooler and makes it clear that there are two independent heatsinks.

Phanteks PH-TC14PEFigure 5: Side view

In Figure 6, you can see the top of the cooler. Each one of the heatsinks has a cover with the manufacturer’s logo.

Phanteks PH-TC14PEFigure 6: Top view

[nextpage title=”The Phanteks PH-TC14PE (Cont’d)”]

The bottom of the cooler is visible in Figure 7. You can also see that the five 8 mm heatpipes pass through the base of the cooler with no gap between them.

Phanteks PH-TC14PEFigure 7: Heatpipes

Figure 8 illustrates the base of the cooler. It is a nickel-plated copper plate with near mirror-like finishing.

Phanteks PH-TC14PEFigure 8: Base

Figure 9 shows the 140 mm fans that come with the cooler. The fans have three-pin connectors, which means they are not PWM compatible, but the cooler comes with an adapter that controls the fans according to the PWM signal from the motherboard. Note the fins on the surface of the blades; they help to reduce the air turbulence.

Phanteks PH-TC14PEFigure 9: Fans

Figure 10 reveals the PH-TC14PE with the fans installed. The cooler comes with silicon strips to absorb the vibrations of the fans.

Phanteks PH-TC14PEFigure 10: Fans installed

[nextpage title=”Installation”]

Figure 11 shows the backplate for installing the PH-TC14PE on Intel sockets 775, 1155, 1156, and 1366 CPUs. AMD and socket LGA2011 systems use the stock backplate.

Phanteks PH-TC14PEFigure 11: Backplate

Figure 12 shows the pair of holders for sockets 775, 1155, 1156, and 1366 installed on our motherboard.

Phanteks PH-TC14PEFigure 12: Holders installed

The next step is to put the cooler in place and hold it there using the two screws on the transversal bar over the base of the cooler. This is a tricky step, because to correctly fasten the screws, you must use a long hex (Allen) screwdriver, not supplied with the cooler. The screws are actually thumbscrews, but the gap between the heatsink and the motherboard is too narrow to fit the hand of an adult.

Phanteks PH-TC14PEFigure 13: Heatsink installed

The last step is to install the central fan. Notice that the cooler is over all of our memory sockets.

Phanteks PH-TC14PEFigure 14: Installation finished

[nextpage title=”How We Tested”]

We tested the cooler with a Core i5-2500K CPU (quad-core, 3.3 GHz), which is a socket LGA1155 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 4.0 GHz (100 MHz base clock and x40 multiplier), with 1.3 V core voltage (Vcore). This CPU was able to reach 4.8 GHz with its default core voltage, but at this setting, the processor enters thermal throttling when using mainstream coolers, reducing the clock and thus the thermal dissipation. This could interfere with the temperature readings, so we chose to maintain a moderate overclocking.

We measured noise and temperature with the CPU under full load. In order to get 100% CPU usage in all cores, we ran Prime 95 25.11 with the “In-place Large FFTs” option. (In this version,
the software uses all available threads.)

We compared the tested cooler to other coolers we already tested, and to the stock cooler that comes with the Core i5-2500K CPU. Note that the results cannot be compared to measures taken on a different hardware configuration, so we retested some “old” coolers with this new methodology. This means you can find different values in older reviews than the values you will read on the next page. Every cooler was tested with the thermal compound that comes with it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings.

During the tests, the panels of the computer case were closed. The front and rear case fans were spinning at minimum speed in order to simulate the “normal” cooler use on a well-ventilated case. We assume that is the common setup used by a cooling enthusiast or overclocker.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed near the top opening of the case. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acoustically insulated room with no other noise sources, which is not the case here.

Hardware Configuration

Operating System Configuration

  • Windows 7 Home Premium 64 bit SP1

Software Used

Error Margin

We adopted a 2°C error margin, meaning temperature differences below 2°C are considered irrelevant.

[nextpage title=”Our Tests”]

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the full speed.

Cooler Room Temp. Noise Speed Core Temp. Temp. Diff.
Cooler Master Hyper TX3 18 °C 50 dBA 2850 rpm 69 °C 51 °C
Corsair A70 23 °C 51 dBA 2000 rpm 66 °C 43 °C
Corsair H100 26 °C 62 dBA 2000 rpm 64 °C 38 °C
EVGA Superclock 26 °C 57 dBA 2550 rpm 67 °C 41 °C
NZXT HAVIK 140 20 °C 46 dBA 1250 rpm 65 °C 45 °C
Thermalright True Spirit 120 26 °C 42 dBA 1500 rpm 82 °C 56 °C
Zalman CNPS12X 26 °C 43 dBA 1200 rpm 71 °C 45 °C
Zalman CNPS9900 Max 20 °C 51 dBA 1700 rpm 62 °C 42 °C
Titan Fenrir Siberia Edition 22 °C 50 dBA 2400 rpm 65 °C 43 °C
SilenX EFZ-120HA5 18 °C 44 dBA 1500 rpm 70 °C 52 °C
Noctua NH-L12 20 °C 44 dBA 1450 rpm 70 °C 50 °C
Zalman CNPS8900 Extreme 21 °C 53 dBA 2550 rpm 71 °C 50 °C
Gamer Storm Assassin 15 °C 48 dBA 1450 rpm 58 °C 43 °C
Deepcool Gammaxx 400 15 °C 44 dBA 1500 rpm 60 °C 45 °C
Cooler Master TPC 812 23 °C 51 dBA 2350 rpm 66 °C 43 °C
Deepcool Gammaxx 300 18 &
43 dBA 1650 rpm 74 °C 56 °C
Intel stock cooler 18 °C 41 dBA 2000 rpm 97 °C 79 °C
Xigmatek Praeton 19 °C 52 dBA 2900 rpm 83 °C 64 °C
Noctua NH-U12P SE2 18 °C 42 dBA 1300 rpm 69 °C 51 °C
Deepcool Frostwin 24 °C 46 dBA 1650 rpm 78 °C 54 °C
Thermaltake Frio Advanced 13 °C 56 dBA 2000 rpm 62 °C 49 °C
Xigmatek Dark Knight Night Hawk Edition 9 °C 48 dBA 2100 rpm 53 °C 44 °C
Thermaltake Frio Extreme 21 °C 53 dBA 1750 rpm 59 °C 38 °C
Noctua NH-U9B SE2 12 °C 44 dBA 1700 rpm 64 °C 52 °C
Thermaltake WATER2.0 Pro 15 °C 54 dBA 2000 rpm 52 °C 37 °C
Deepcool Fiend Shark 18 °C 45 dBA 1500 rpm 74 °C 56 °C
Arctic Freezer i30 13 °C 42 dBA 1350 rpm 63 °C 50 °C
Spire TME III 8 °C 46 dBA 1700 rpm 70 °C 62 °C
Thermaltake WATER2.0 Performer 11 °C 54 dBA 2000 rpm 49 °C 38 °C
Arctic Alpine 11 PLUS 11 °C 45 dBA 2000 rpm 82 °C 71 °C
be quiet! Dark Rock 2 10 °C 41 dBA 1300 rpm 58 °C 48 °C
Phanteks PH-TC14CS 16 °C 47 dBA 1300 rpm 58 °C 42 °C
Phanteks PH-TC14PE 16 °C 48 dBA 1300 rpm 57 °C 41 °C

In the graph below, you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

Phanteks PH-TC14PE

In the graph below, you can see how many decibels of noise each cooler makes.

Phanteks PH-TC14PE

[nextpage title=”Main Specifications”]

The main specifications for the Phanteks PH-TC14PE CPU cooler include:

  • Application: Sockets 775, 1155, 1156, 1366, 2011, AM2(+), AM3(+), and FM1 processors
  • Dimensions: 5.5 x 6.3 x 6.7 inches (140 x 159 x 171 mm) (W x L x H)
  • Maximum TDP: Not informed
  • Fins: Aluminum
  • Base: Nickel-plated copper
  • Heat-pipes: Five 8-mm nickel-plated copper heatpipes
  • Fan: 2 x 140 mm
  • Nominal fan speed: 1,300 rpm
  • Fan air flow: 88.6 cfm
  • Power consumption: 2 x 2.8 W
  • Nominal noise level: 19.6 dBA
  • Weight: 2.76 lbs (1,25 kg)
  • More information: https://phanteks.com
  • Average price in the U.S.*: USD 100.00

* Researched at Newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

After being surprised with the excellent performance of the Phanteks PH-TC14CS, we were expecting a great performance from the PH-TC14PE, which didn’t disappoint us, showing a performance compatible with a real high-end CPU cooler. The noise level was excellent for such a performance.

The only problem with the PH-TC14PE is the need of a specific tool (a long Allen screwdriver) to install it properly. We suggest Phanteks to include it in order to make the customer’s life easier.

For its excellent performance, nice look, and good noise level, we are giving the Phanteks PH-TC14PE our Golden Award.