[nextpage title=”Introduction”]

The Rosewill SilentNight 500 W is a fanless power supply with the 80 Plus Platinum certification, targeted to users building a quiet computer. It also comes with a modular cabling system. Let’s see how this new release fared on our tests.

The Rosewill SilentNight 500 W is a rebranded Super Flower SF-500P14FG

Rosewill SilentNight 500w Figure 1: Rosewill SilentNight 500 W power supply

 Rosewill SilentNight 500wFigure 2: Rosewill SilentNight 500 W power supply

The Rosewill SilentNight 500 W is 6.7” (170 mm) deep.

The modular cabling system from this power supply has four connectors and can be used by any type of cable. Three cables come permanently attached to the power supply. These cables are protected with nylon sleeves, which come from inside the unit. This power supply comes with the following cables:

  • Main motherboard cable with a 20/24-pin connector, 22.4” (57 cm) long, permanently attached to the power supply
  • One cable with two ATX12V connectors that together form an EPS12V connector, 26” (66 cm) long, permanently attached to the power supply
  • One cable with two six/eight-pin connectors for video cards, 21.2” (54 cm) to the first connector, 5.1” (13 cm) between connectors, permanently attached to the power supply
  • One cable with two six/eight-pin connectors for video cards, 19.7” (50 cm) to the first connector, 5.1” (13 cm) between connectors, modular cabling system
  • One cable with four SATA power connectors, 19.7” (50 cm) to the first connector, 5.1” (13 cm) between connectors, modular cabling system
  • One cable with two SATA and two peripheral power connectors, 19.7” (50 cm) to the first connector, 5.1” (13 cm) between connectors, modular cabling system
  • One cable with three peripheral power connectors and one floppy disk drive power connector, 19.7” (50 cm) to the first connector, 5.1” (13 cm) between connectors, modular cabling system

All wires are 18 AWG, which is the minimum recommended gauge, except for the +12 V (yellow) and ground (black) wires used on the ATX12V/EPS12V and main motherboard cables, which are thicker (16 AWG).

The number of connectors is outstanding for a 500 W power supply.

Rosewill SilentNight 500w Figure 3: Cables

Let’s now take an in-depth look inside this power supply.

[nextpage title=”A Look Inside the Rosewill SilentNight 500 W”]

We decided to disassemble this power supply to see what it looks like inside, how it is designed, and what components are used. Please read our “Anatomy of Switching Power Supplies” tutorial to understand how a power supply works and to compare this power supply to others.        

On this page we will have an overall look, and then in the following pages we will discuss in detail the quality and ratings of the components used.

Rosewill SilentNight 500wFigure 4: Top view

Rosewill SilentNight 500wFigure 5: Front quarter view

Rosewill SilentNight 500wFigure 6: Rear quarter view

Rosewill SilentNight 500wFigure 7: The printed circuit board

[nextpage title=”Transient Filtering Stage”]

As we have mentioned in other articles and reviews, the first place we look when opening a power supply for a hint about its quality, is its filtering stage. The recommended components for this stage are two ferrite coils, two ceramic capacitors (Y capacitors, usually blue), one metalized polyester capacitor (X capacitor), and one MOV (Metal-Oxide Varistor). Very low-end power supplies use fewer components, usually removing the MOV and the first coil.

In the transient filtering stage, this power supply has two X capacitors and two Y capacitors more than the minimum required. However, it doesn’t have an MOV, a component that is in charge of removing spikes coming from the power grid.

Rosewill SilentNight 500wFigure 8: Transient filtering stage

On the next page, we will have a more detailed discussion about the components used in the Rosewill SilentNight 500 W.

[nextpage title=”Primary Analysis”]

On this page, we will take an in-depth look at the primary stage of the Rosewill SilentNight 500 W. For a better understanding, please read our “Anatomy of Switching Power Supplies” tutorial.         

This power supply uses one US30K80R rectifying bridge, which is attached to the same heatsink where the active PFC and switching transistors are located. This bridge supports up to 30 A at 97° C. In theory, you would be able to pull up to 3,450 W from a 115 V power grid. Assuming 80% efficiency, the bridge would allow this unit to deliver up to 2,760 W without burning itself out (or 3,105 W at 90% efficiency). Of course, we are only talking about this particular component. The real limit will depend on all the components combined in this power supply.

Rosewill SilentNight 500wFigure 9: Rectifying bridge

The
active PFC circuit uses one IPW50R140CP MOSFET, which supports up to 23 A at 25° C or 15 A at 100° C in continuous mode (note the difference temperature makes), or 56 A at 25° C in pulse mode. These transistors present a 140 mΩ maximum resistance when turned on, a characteristic called RDS(on). The lower the number the better, meaning that the transistor will waste less power, and the power supply will have a higher efficiency.  

The active PFC circuit is managed by an NCP1653A active PFC controller.

Rosewill SilentNight 500wFigure 10: Active PFC controller

The output of the active PFC circuit is filtered by one 470 µF x 400 V Japanese electrolytic capacitor, from Chemi-Con, labeled at 105° C.

Rosewill SilentNight 500wFigure 11: Capacitor

In the switching section, two IPP50R199CP MOSFETs are employed using a resonant configuration. Each transistor supports up to 17 A at 25° C or 11 A at 100° C in continuous mode or up to 40 A at 25° C in pulse mode, with a maximum RDS(on) of 199 mΩ. 

Rosewill SilentNight 500wFigure 12: The two switching transistors, the active PFC diode, and the active PFC transistor

The switching transistors are controlled by Super Flower’s proprietary SF29601 controller.   

Rosewill SilentNight 500wFigure 13: Resonant controller

Let’s now take a look at the secondary of this power supply.

[nextpage title=”Secondary Analysis”]

As one would expect in a high-efficiency power supply, the Rosewill SilentNight 500 W uses a synchronous design, where the Schottky rectifiers are replaced with MOSFETs. Also, the reviewed product uses a DC-DC design in its secondary. This means that the power supply is basically a +12 V unit, with the +5 V and +3.3 V outputs produced by two smaller power supplies connected to the main +12 V rail. Both designs are used to increase efficiency.

The +12 V output uses four IPP023N04N G MOSFETs, each one supporting up to 90 A at 100° C in continuous mode, or up to 400 A at 25° C in pulse mode, with a maximum RDS(on) of 2.3 mΩ.

Rosewill SilentNight 500wFigure 14: The +12 V transistors

As explained, the +5 V and +3.3 V outputs are produced by two DC-DC converters, which are situated on the same printed circuit. Each converter is controlled by an NCP1587A integrated circuit. Each output uses two IPD040N03L G MOSFETs, each one supporting up to 90 A at 25° C or up to 76 A at 100° C in continuous mode and up to 400 A at 25° C in pulse mode, with a maximum RDS(on) of 4 mΩ.

Rosewill SilentNight 500wFigure 15: The DC-DC converters

Rosewill SilentNight 500wFigure 16: The DC-DC converters

The outputs of the power supply are monitored by the SF29601 integrated circuit. Since this is a proprietary chip from Super Flower, there is no datasheet publicly available for it, so we can’t comment on the protections it supports.

The secondary has solid and regular electrolytic capacitors, manufactured in Japan by Chemi-Con, and labeled at 105° C.

Rosewill SilentNight 500wFigure 17: Capacitors

[nextpage title=”Power Distribution”]

In Figure 18, you can see the power supply label containing all the power specs.

Rosewill SilentNight 500wFigure 18: Power supply label

As you can see, this unit has a single +12 V rail configuration, so there is not much to talk about here.

Let’s find out how much power this unit can deliver.

[nextpage title=”Load Tests”]

We conducted several tests with this power supply, as described in the article, “Hardware Secrets Power Supply Test Methodology.”     

First, we tested this power supply with five different load patterns, trying to pull around 20%, 40%, 60%, 80%, and 100% of its labeled maximum capacity (actual percentage used listed under “% Max Load”), watching the behavior of the reviewed unit under each load. In the table below, we list the load patterns we used and the results for each load.

If you add all the powers listed for each test, you may find a different value than what is posted under “Total” below. Since each output can have a slight variation (e.g., the +5 V output working at 5.10 V), the actual total amount of power being delivered is slightly different than the calculated value. In the “Total” row, we are using the real amount of power being delivered, as measured by our load tester.

The +12VA and +12VB inputs listed below are
the two +12 V independent inputs from our load tester. During this test, the +12VA and +12VB inputs were connected to the power supply’s single +12 V rail. (The +12VB input was connected to the power supply EPS12V connector.)

Input Test 1 Test 2 Test 3 Test 4 Test 5
+12VA 3.5 A (42 W) 7.5 A (90 W) 10.5 A (126 W) 14 A (168 W) 17.5 A (210 W)
+12VB 3.5 A (42 W) 7 A (84 W) 10.5 A (126 W) 14 A (168 W) 17 A (204 W)
+5 V 1 A (5 W) 2 A (10 W) 4 A (20 W) 6 A (30 W) 8 A (40 W)
+3.3 V 1 A (3.3 W) 2 A (6.6 W) 4 A (13.2 W) 6 A (19.8 W) 8 A (26.4 W)
+5VSB 1 A (5 W) 1.5 A (7.5 W) 2 A (10 W) 2.5 A (12.5 W) 3 A (15 W)
-12 V 0.5 A (6 W) 0.5 A (6 W) 0.5 A (6 W) 0.5 A (6 W) 0.5 A (6 W)
Total 104.8 W 210.5 W 314.3 W 425.9 W 502.2 W
% Max Load 21.0% 42.1% 62.9% 85.2% 100.4%
Room Temp. 45.9° C 45.2° C 45.2° C 45.6° C 46.9° C
PSU Temp. 52.7° C 52.9° C 53.4° C 54.6° C 56.2° C
Voltage Regulation Pass Pass Pass Pass Pass
Ripple and Noise Pass Pass Pass Pass Pass
AC Power 114.8 W 227.2 W 341.4 W 468.1 W 556.8 W
Efficiency 91.3% 92.6% 92.1% 91.0% 90.2%
AC Voltage 118.0 V 117.3 115.9 V 114.8 V 113.8 V
Power Factor 0.984 0.983 0.986 0.989 0.991
Final Result Pass Pass Pass Pass Pass

We were really impressed by the efficiency results of the Rosewill SilentNight 500 W, always above 90% at high temperatures.

Voltage regulation was also outstanding, with all voltages within 3% of their nominal values. The ATX12V specification states that positive voltages must be within 5% of their nominal values, and negative voltages must be within 10% of their nominal values.

Let’s discuss the ripple and noise levels on the next page.

[nextpage title=”Ripple and Noise Tests”]

Voltages at the power supply outputs must be as “clean” as possible, with no noise or oscillation (also known as “ripple”). The maximum ripple and noise levels allowed are 120 mV for +12 V and -12 V outputs, and 50 mV for +5 V, +3.3 V and +5VSB outputs. All values are peak-to-peak figures. We consider a power supply as being top-notch if it can produce half or less of the maximum allowed ripple and noise levels.

The Rosewill SilentNight 500 W provided extremely low ripple and noise levels, as you can see in the table below.

Input Test 1 Test 2 Test 3 Test 4 Test 5
+12VA 10.2 mV 14.8 mV 20.4 mV 27.2 mV 33.8 mV
+12VB 10.4 mV 15.0 mV 21.0 mV 28.8 mV 35.4 mV
+5 V 6.4 mV 7.6 mV 8.4 mV 9.2 mV 10.0 mV
+3.3 V 8.2 mV 10.8 mV 11.8 mV 15.0 mV 17.2 mV
+5VSB 5.8 mV 6.8 mV 8.2 mV 10.2 mV 16.2 mV
-12 V 9.8 mV 10.8 mV 12.2 mV 13.2 mV 13.4 mV

Below you can see the waveforms of the outputs during test five.

Rosewill SilentNight 500wFigure 19: +12VA input from load tester during test five at 502.2 W (33.8 mV)

Rosewill SilentNight 500wFigure 20: +12VB input from load tester during test five at 502.2 W (35.4 mV)

Rosewill SilentNight 500wFigure 21: +5V rail during test five at 502.2 W (10.0 mV)

Rosewill SilentNight 500wFigure 22: +3.3 V rail during test five at 502.2 W (17.2 mV)

Let’s see if we can pull more than 500 W from this unit.

[nextpage title=”Overload Tests”]

Below you can see the maximum we could pull from this power supply. The objective of this test is to see if the power supply has its protection circuits working properly. This unit passed this test, since it shut down when we tried to pull more than what is listed below. During this test, noise and ripple levels were still low, with all outputs still within 3% of their nominal values.

Input Overload Test
+12VA 26 A (312 W)
+12VB 26 A (312 W)
+5 V 10 A (50 W)
+3.3 V 10 A (33 W)
+5VSB 3 A (15 W)
-12 V 0.5 A (6 W)
Total 657.8 W
% Max Load 131.6%
Room Temp. 44.8° C
PSU Temp. 50.1° C
AC Power 749.0 W
Efficiency 87.8%
AC Voltage 111.7 V
Power Factor 0.992

[nextpage title=”Main Specifications”]

The main specifications for the Rosewill SilentNight 500 W power supply include:

  • Standards: ATX12V 2.31 and EPS12V 2.92
  • Nominal labeled power: 500 W
  • Measured maximum power: 657.8 W at 49.4° C
  • Labeled efficiency: 80 Plus Platinum certification (90% at light/20% load, 92% at typical/50% load, and 89% at full/100% load) 
  • Measured efficiency: Between 90.2% and 92.6%, at 115 V (nominal, see complete results for actual voltage)
  • Active PFC: Yes
  • Modular Cabling System: Yes, partial
  • Motherboard Power Connectors: One 20/24-pin connector and two ATX12V connectors that together form an EPS12V connector, permanently attached to the power supply
  • Video Card Power Connectors: Four six/eight-pin connectors on two cables, one permanently attached to the power
    supply and one on the modular cabling system
  • SATA Power Connectors: Six on two cables, modular cabling system
  • Peripheral Power Connectors: Five on two cables, modular cabling system
  • Floppy Disk Drive Power Connectors: One
  • Protections (as listed by the manufacturer): Over voltage (OVP), under voltage (UVP), over current (OCP), over power (OPP), and short-circuit (SCP) protections
  • Are the above protections really available? Yes.
  • Warranty: Five years
  • Real Model: Super Flower SF-500P14FG
  • More Information: https://www.rosewill.com
  • Average Price in the U.S.*: USD 160.00

* Researched at Newegg.com on the day we published this review.[nextpage title=”Conclusions”]

We were really impressed with the Rosewill SilentNight 500 W. It is one of the best power supplies that  we’ve ever reviewed.

Efficiency was always above 90%, surpassing the requirements of the 80 Plus Platinum certification by a good margin. Most power supplies we test can’t deliver the promised efficiency at high temperatures, since the tests for the 80 Plus certification are conducted at 23° C, and efficiency drops as temperature increases.

The efficiency numbers are more incredible when you take into consideration that this is a fanless power supply. Power supplies without a fan may work internally at higher temperatures, meaning lower efficiency.

Voltage regulation was superb, with all outputs within 3% of their nominal values. Noise and ripple levels were extremely low, making this unit a flawless product.

The Rosewill SilentNight 500 W competes directly with the Seasonic Platinum Fanless 520 W. This model from Seasonic has a few advantages, which include a fully modular cabling system, seven-year warranty, a depth of 6.3”/160 mm (the Rosewill model, which is 6.7”/170 mm deep, won’t fit cases that only support power supplies up to 6.3”/160 mm deep), and costs USD 10 less. The model from Seasonic also presented, on our tests, maximum efficiency that was one percentage point above Rosewill’s. The Rosewill SilentNight 500 W, however, has four six/eight-pin connectors for video cards, while the model from Seasonic has two.

While we are inclined to recommend the Seasonic Platinum Fanless 520 W over the Rosewill SilentNight 500 W because of its slight overall advantage, the model from Rosewill is an excellent product as well and will please the user who is building a silent computer and wants “the best.” Other fanless power supplies, such as the SilverStone Nightjar 500 W (80 Plus Bronze certification, USD 185), pale in comparison