Primary Analysis
Contents
We were very curious to check what components were chosen for the power section of this power supply and also how they were set together, i.e., the design used. We were willing to see if the components could really deliver the power announced by Thermaltake.
The design used here is different from the one used by other low-end power supplies we reviewed recently: Seventeam ST-420BKV0, Huntkey Green Star 450 W and Kingwin ABT-450MM. These three power supplies use two regular NPN BJT power transistors on the switching section under a half-bridge configuration, while Thermaltake Purepower 430 NP uses one power MOSFET transistor in single transistor forward configuration.
The use of MOSFET transistor is better than using regular NPN transistors, but since this power uses only one transistor and the other power supplies use two, we will only be able to judge which configuration is better during our actual performance tests.
This power supply uses one GBU806 rectifying bridge in its primary stage, which can deliver up to 8 A (rated at 100° C). This component is clearly overspec’ed: at 115 V this unit would be able to pull up to 920 W from the power grid; assuming 80% efficiency, the bridge would allow this unit to deliver up to 736 W without burning this component. Of course we are only talking about this component and the real limit will depend on all other components from the power supply.
As we said, this power supply uses only one transistor on its switching section, an STP10NK60Z power MOSFET transistor in single-transistor forward configuration. It can deliver up to 10 A at 25° C or 5.7 A at 100° C. You can see it on the right-hand side of Figure 12. The transistor on the left-hand side is the transistor used on the +5VSB power supply, which is independent from the rest of the power supply.