We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.

[nextpage title=”Introduction”]

The Thermaltake WATER2.0 Performer is a sealed liquid cooling system with a 120 mm radiator and two 120 mm fans. Let’s test it.

The WATER2.0 Performer is a less expensive version of the WATER2.0 Pro, which we reviewed recently. It uses the same block and fans, but the radiator of the Performer is half as deep as the Pro’s.

Figure 1 shows the box of the WATER2.0 Performer.

Thermaltake WATER2.0 PerformerFigure 1: Package

Figure 2 shows the contents of the box: the radiator-block set, fans, manuals, a Y-harness for connecting both of the fans to a single motherboard fan connector, and installation hardware.

Thermaltake WATER2.0 PerformerFigure 2: Accessories

This watercooler is discussed in detail in the following pages.

[nextpage title=”The Thermaltake WATER2.0 Performer”]

The sealed radiator-block system is shown in Figure 3. At the left is the radiator; at the right you can see the block. There is a cable on the block, which brings power to the integrated pump.

Thermaltake WATER2.0 PerformerFigure 3: Sealed system

Figures 4 and 5 reveal the radiator of the WATER2.0 Performer.

Thermaltake WATER2.0 PerformerFigure 4: Radiator

Thermaltake WATER2.0 PerformerFigure 5: Radiator

[nextpage title=”The Thermaltake WATER2.0 Performer (Cont’d)”]

In Figure 6, you can see the top of the block, where the pump that makes the liquid flow is integrated.

Thermaltake WATER2.0 PerformerFigure 6: Block

The base of the block, which is made of copper, is revealed in Figure 7. The thermal compound comes pre-applied.

Thermaltake WATER2.0 PerformerFigure 7: Base

Figure 8 illustrates the twin 120 mm fans that come with the WATER2.0 Performer. The fans have four pin connectors, which means they are compatible with PWM speed control. Both fans must be installed in exhaust mode.

Thermaltake WATER2.0 PerformerFigure 8: Fans

[nextpage title=”Installation”]

In Figure 9, you can see the backplate for use on Intel CPUs. You must insert the four nuts into the backplate before attaching it to the solder side of the motherboard.

Thermaltake WATER2.0 PerformerFigure 9: Backplate

The second step of the installation is a little complicated. You must mount the frame on the block, as shown in Figure 10.

Thermaltake WATER2.0 PerformerFigure 10: Frame installed

The last step is to install the system inside the computer, attaching the block on the CPU and the radiator on the rear panel, on the space originally designed for the rear fan. You must remove the rear fan of the case, if your case has one. Both fans must be installed as exhaust.

Thermaltake WATER2.0 PerformerFigure 11: Installation finished

[nextpage title=”How We Tested”]

We tested the cooler with a Core i5-2500K CPU (quad-core, 3.3 GHz), which is a socket LGA1155 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 4.0 GHz (100 MHz base clock and x40 multiplier), with 1.3 V core voltage (Vcore). This CPU was able to reach 4.8 GHz with its default core voltage, but at this setting, the processor enters thermal throttling when using mainstream coolers, reducing the clock and thus the thermal dissipation. This could interfere with the temperature readings, so we chose to maintain a moderate overclocking.

We measured noise and temperature with the CPU under full load. In order to get 100% CPU usage in all cores, we ran Prime 95 25.11 with the “In-place Large FFTs” option. (In this version, the software uses all available threads.)

We compared the tested cooler to other coolers we already tested, and to the stock cooler that comes with the Core i5-2500K CPU. Note that the results cannot be compared to measures taken on a different hardware configuration, so we retested some “old” coolers with this new methodology. This means you can find different values in older reviews than the values you will read on the next page. Every cooler was tested with the thermal compound that comes with it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings.

During the tests, the panels of the computer case were closed. The front and rear case fans were spinning at minimum speed in order to simulate the “normal” cooler use on a well-ventilated case. We assume that is the common setup used by a cooling enthusiast or overclocker.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed near the top opening of the case. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acousti
cally insulated room with no other noise sources, which is not the case here.

Hardware Configuration

Operating System Configuration

  • Windows 7 Home Premium 64 bit SP1

Software Used

Error Margin

We adopted a 2°C error margin, meaning temperature differences below 2°C are considered irrelevant.

[nextpage title=”Our Tests”]

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the full speed.

Cooler Room Temp. Noise Speed Core Temp. Temp. Diff.
Cooler Master Hyper TX3 18 °C 50 dBA 2850 rpm 69 °C 51 °C
Corsair A70 23 °C 51 dBA 2000 rpm 66 °C 43 °C
Corsair H100 26 °C 62 dBA 2000 rpm 64 °C 38 °C
EVGA Superclock 26 °C 57 dBA 2550 rpm 67 °C 41 °C
NZXT HAVIK 140 20 °C 46 dBA 1250 rpm 65 °C 45 °C
Thermalright True Spirit 120 26 °C 42 dBA 1500 rpm 82 °C 56 °C
Zalman CNPS12X 26 °C 43 dBA 1200 rpm 71 °C 45 °C
Zalman CNPS9900 Max 20 °C 51 dBA 1700 rpm 62 °C 42 °C
Titan Fenrir Siberia Edition 22 °C 50 dBA 2400 rpm 65 °C 43 °C
SilenX EFZ-120HA5 18 °C 44 dBA 1500 rpm 70 °C 52 °C
Noctua NH-L12 20 °C 44 dBA 1450 rpm 70 °C 50 °C
Zalman CNPS8900 Extreme 21 °C 53 dBA 2550 rpm 71 °C 50 °C
Gamer Storm Assassin 15 °C 48 dBA 1450 rpm 58 °C 43 °C
Deepcool Gammaxx 400 15 °C 44 dBA 1500 rpm 60 °C 45 °C
Cooler Master TPC 812 23 °C 51 dBA 2350 rpm 66 °C 43 °C
Deepcool Gammaxx 300 18 °C 43 dBA 1650 rpm 74 °C 56 °C
Intel stock cooler 18 °C 41 dBA 2000 rpm 97 °C 79 °C
Xigmatek Praeton 19 °C 52 dBA 2900 rpm 83 °C 64 °C
Noctua NH-U12P SE2 18 °C 42 dBA 1300 rpm 69 °C 51 °C
Deepcool Frostwin 24 °C 46 dBA 1650 rpm 78 °C 54 °C
Thermaltake Frio Advanced 13 °C 56 dBA 2000 rpm 62 °C 49 °C
Xigmatek Dark Knight Night Hawk Edition 9 °C 48 dBA 2100 rpm 53 °C 44 °C
Thermaltake Frio Extreme 21 °C 53 dBA 1750 rpm 59 °C 38 °C
Noctua NH-U9B SE2 12 °C 44 dBA 1700 rpm 64 °C 52 °C
Thermaltake WATER2.0 Pro 15 °C 54 dBA 2000 rpm 52 °C 37 °C
Deepcool Fiend Shark 18 °C 45 dBA 1500 rpm 74 °C 56 °C
Arctic Freezer i30 13 °C 42 dBA 1350 rpm 63 °C 50 °C
Spire TME III 8 °C 46 dBA 1700 rpm 70 °C 62 °C
Thermaltake WATER2.0 Performer 11 °C 54 dBA 2000 rpm 49 °C 38 °C

In the graph below, you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

 Thermaltake WATER2.0 Performer

In the graph below, you can see how many decibels of noise each cooler makes.

Thermaltake WATER2.0 Performer

[nextpage title=”Main Specifications”]

The main specifications for the Thermaltake WATER2.0 Performer liquid CPU cooler include:

  • Application: Sockets 775, 1155, 1156, 1366, 2011, AM2, AM2+, AM3, AM3+, and FM1 processors
  • Radiator dimensions: 5.9 x 4.7 x 1.1 inches (151 x 120 x 27 mm) (W x L x H)
  • Block height: 1.1 inches (29 mm)
  • Fins: Aluminum
  • Base: Copper
  • Heat-pipes: None
  • Fan: Two, 120 mm
  • Nominal fan speed: 2,000 rpm
  • Fan air flow: 81.32 cfm
  • Power consumption: 2 x 6.0 W
  • Nominal noise level: 27.36 dBA
  • Weight: 1.8 lb (815 kg)
  • More information: https://www.thermaltakeusa.com
  • Average Price in the U.S.*: USD 80.00

* Researched at Newegg.com on the day we published this review.

[nextpage title=”Conclusions”]

When we tested the WATER2.0 Pro, we were pleased by the high cooling performance it achieved. When we were installing the WATER2.0 Performer, a less expensive version with a smaller radiator, we were expecting a sensible performance difference. But the WATER2.0 Performer surprised us, delivering the same cooling performance of its bigger brother!

There’s no other way to say it: the Thermaltake WATER2.0 Performer is an incredible sealed liquid cooling system, offering high cooling performance, acceptable noise level, and an excellent price/performance ratio. It receives the Hardware Secrets Golden Award with honors.