• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
Home » All Xeon Models

All Xeon Models

[nextpage title=”Introduction”]

In 1998 Intel started including the name “Xeon” to label their processors targeted to the server and workstation market. These processors can access more RAM memory, can work on a multi-processing environment (i.e., motherboards with more than one CPU installed) and have a performance higher than their counterpart targeted to the end-user market.

The server and workstation versions of Pentium II and Pentium III were called Pentium II Xeon and Pentium III Xeon, respectively. So, while Pentium II and Pentium III were targeted to end users, Pentium II Xeon and Pentium III Xeon were targeted to servers and workstations.

With Pentium 4, Intel decided to call its server version as “Xeon” instead of “Pentium 4 Xeon.”

In the table below you can see the Intel CPUs targeted to end users and their counterparts targeted to the server and workstation market.

End-User Market Server and Workstation Market
Pentium II Pentium II Xeon
Pentium III Pentium III Xeon
Pentium 4 XeonXeon MPXeon 50xxXeon 70xxXeon 71xx
Core 2 Duo Xeon 30xxXeon 31xxXeon 32xxXeon 33xxXeon 51xxXeon 52xxXeon 53xxXeon 54xxXeon 72xxXeon 73xx

In this tutorial we will present the main technical features of all Xeon models released to date (Pentium II Xeon, Pentium III Xeon, Xeon and Xeon MP).

[nextpage title=”Pentium II Xeon”]

Intel released Pentium II Xeon in June 1998. This is an Intel 6th generation CPU, since it is based on the same architecture used by Pentium Pro.

Pentium II XeonFigure 1: Pentium II Xeon processor.

The main difference between Pentium II Xeon and Pentium II is the clock rate on which the L2 memory cache is accessed. While Pentium II Xeon accesses its L2 memory cache using its internal clock rate (e.g., 400 MHz on a 400 MHz Pentium II Xeon), Pentium II accesses its L2 memory cache at half its internal clock rate (e.g., 200 MHz on a 400 MHz Pentium II).

The main technical features of Pentium II Xeon are:

  • 16 KB instruction L1 memory cache and 16 KB data L1 memory cache.
  • 512 KB, 1 MB or 2 MB L2 memory cache accessed at the same internal clock rate as the CPU.
  • 100 MHz external bus.
  • Access to up 64 GB RAM memory.
  • Symmetric multiprocessing (SMP) up to four CPUs (models with 2 MB L2 cache allowed SMP up to eight CPUs).
  • The CPU was installed in a cartridge called SECC (Single Edge Contact Cartridge) and connected to the motherboard through a 330-contact connector called slot 2.
  • Based on “Deschutes” core (the same used by Pentium II processors with 100 MHz external bus) and manufactured with 0.25 µm technology, had 7.5 million transistors and used an area of 203 mm2.

Pentium II Xeon used a Pentium II-like slot, but it was incompatible, since it had 330 contacts (Pentium II slot had 220 contacts). This means that we couldn’t install a Pentium II Xeon on a Pentium II motherboard and vice-versa.

In the table below you see all Pentium II Xeon models that were released. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Internal Clock TDP L2 Memory Cache Max. Temp. (° C)
SL34H 400 MHz 30.8 W 512 KB 75
SL34J 400 MHz 38.1 W 1 MB 75
SL35N 400 MHz 30.8 W 512 KB 75
SL35P 400 MHz 38.1 W 1 MB 75
SL2RH 400 MHz 30.8 W 512 KB 75
SL2NB 400 MHz 38.1 W 1 MB 75
SL36W 450 MHz 34.5 W 512 KB 75
SL2XJ 450 MHz 34.5 W 512 KB 75
SL2XK 450 MHz 42.8 W 1 MB 75
SL354 450 MHz 34.5 W 512 KB 75
SL2XL 450 MHz 46.7 W 2 MB 75
SL33T 450 MHz 34.5 W 512 KB 75
SL33V 450 MHz 46.7 W 2 MB 75
SL33U 450 MHz 42.8 W 1 MB 75

[nextpage title=”Pentium III Xeon”]

Intel released Pentium III Xeon on March 1999. It is also a 6th generation Intel processor, like Pentium III and Pentium II, since it is based on the same architecture used by Pentium Pro.

Pentium III XeonFigure 2: Pentium III Xeon processor.

The main technical features of Pentium II Xeon are:

  • 16 KB instruction L1 memory cache and 16 KB data L1 memory cache.
  • 512 KB, 1 MB or 2 MB L2 memory cache accessed at the same internal clock rate as the CPU.
  • 100 MHz or 133 MHz external bus.
  • Access to up 64 GB RAM memory.
  • Symmetric multiprocessing (SMP) up to four CPUs (models with 2 MB L2 cache allowed SMP up to eight CPUs).
  • The CPU was installed in a cartridge called SECC (Single Edge Contact Cartridge) and connected to the motherboard through a 330-contact connector called slot 2.
  • SSE instruction set.
  • 0.25 µm (codename “Tanner”) or 0.18 µm (codename “Cascades”) manufacturing process.

Pentium III Xeon used the same slot type as Pentium II Xeon and could use the same motherboard originally designed for Pentium II Xeon (sometimes a BIOS upgrade was necessary), if the motherboard was capable of providing the external clock rate required by the CPU. This slot was incompatible with the slot used by Pentium II and the first Pentium III models (slot 1). This means that you couldn’t install a Pentium III Xeon on Pentium III motherboards and vice-versa.

In the table below you see all Pentium III Xeon models that were released. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Internal Clock External Clock Technology TDP L2 Memory Cache Max. Temp. (° C)
SL3CB 500 MHz 100 MHz 0.25 µm 36.2 W 2 MB 75
SL3CA 500 MHz 100 MHz 0.25 µm 44 W 1 MB 75
SL3C9 500 MHz 100 MHz 0.25 µm 36 W 512 KB 75
SL3D9 500 MHz 100 MHz 0.25 µm 36 W 512 KB 75
SL3DA 500 MHz 100 MHz 0.25 µm 44 W 1 MB 75
SL3DB 500 MHz 100 MHz 0.25 µm 36.2 W 2 MB 75
SL387 500 MHz 100 MHz 0.25 µm 36.2
W
2 MB 75
SL386 500 MHz 100 MHz 0.25 µm 44 W 1 MB 75
SL385 500 MHz 100 MHz 0.25 µm 36 W 512 KB 75
SL2XW 500 MHz 100 MHz 0.25 µm 36.2 W 2 MB 75
SL2XV 500 MHz 100 MHz 0.25 µm 44 W 1 MB 75
SL2XU 500 MHz 100 MHz 0.25 µm 36 W 512 KB 75
SL3LM 550 MHz 100 MHz 0.25 µm 34 W 512 KB 68
SL3FR 550 MHz 100 MHz 0.25 µm 33.1 W 512 KB 68
SL3FK 550 MHz 100 MHz 0.25 µm 33.1 W 512 KB 68
SL3LN 550 MHz 100 MHz 0.25 µm 34 W 1 MB 68
SL3LP 550 MHz 100 MHz 0.25 µm 39.5 W 2 MB 68
SL3TW 550 MHz 100 MHz 0.25 µm 34 W 1 MB 68
SL3Y4 550 MHz 100 MHz 0.25 µm 34 W 512 KB 68
SL3CF 550 MHz 100 MHz 0.25 µm 39.5 W 2 MB 68
SL3SS 600 MHz 133 MHz 0.18 µm 19.2 W 256 KB 55
SL3BK 600 MHz 133 MHz 0.18 µm 19.2 W 256 KB 55
SL3WM 600 MHz 133 MHz 0.18 µm 18.8 W 256 KB 55
SL3BJ 600 MHz 133 MHz 0.18 µm 18.8 W 256 KB 55
SL3WN 600 MHz 133 MHz 0.18 µm 19.2 W 256 KB 55
SL3DC 667 MHz 133 MHz 0.18 µm 21.3 W 256 KB 55
SL3WP 667 MHz 133 MHz 0.18 µm 20.8 W 256 KB 55
SL3WQ 667 MHz 133 MHz 0.18 µm 21.3 W 256 KB 55
SL3BL 667 MHz 133 MHz 0.18 µm 20.8 W 256 KB 55
SL3ST 667 MHz 133 MHz 0.18 µm 21.3 W 256 KB 55
SL3WZ 700 MHz 100 MHz 0.18 µm 28.9 W 2 MB 65
SL3X2 700 MHz 100 MHz 0.18 µm 29.6 W 2 MB 65
SL49R 700 MHz 100 MHz 0.18 µm 28.9 W 2 MB 65
SL3U4 700 MHz 100 MHz 0.18 µm 28.9 W 1 MB 65
SL3U5 700 MHz 100 MHz 0.18 µm 29.6 W 1 MB 65
SL4GD 700 MHz 100 MHz 0.18 µm 28.9 W 1 MB 65
SL4GE 700 MHz 100 MHz 0.18 µm 29.6 W 1 MB 65
SL4GF 700 MHz 100 MHz 0.18 µm 28.9 W 2 MB 65
SL4GG 700 MHz 100 MHz 0.18 µm 29.6 W 2 MB 65
SL3WS 733 MHz 133 MHz 0.18 µm 23.3 W 256 KB 55
SL3WR 733 MHz 133 MHz 0.18 µm 22.8 W 256 KB 55
SL3SU 733 MHz 133 MHz 0.18 µm 23.3 W 256 KB 55
SL3SG 733 MHz 133 MHz 0.18 µm 23.3 W 256 KB 55
SL3SF 733 MHz 133 MHz 0.18 µm 22.8 W 256 KB 55
SL4H6 733 MHz 133 MHz 0.18 µm 22.8 W 256 KB 55
SL4H7 733 MHz 133 MHz 0.18 µm 23.3 W 256 KB 55
SL3V2 800 MHz 133 MHz 0.18 µm 25.4 W 256 KB 55
SL3V3 800 MHz 133 MHz 0.18 µm 25.4 W 256 KB 55
SL3VU 800 MHz 133 MHz 0.18 µm 25.4 W 256 KB 55
SL3WU 800 MHz 133 MHz 0.18 µm 24.8 W 256 KB 55
SL3WT 800 MHz 133 MHz 0.18 µm 24.5 W 256 KB 55
SL4H8 800 MHz 133 MHz 0.18 µm 24.8 W 256 KB 55
SL4H9 800 MHz 133 MHz 0.18 µm 28.5 W 256 KB 55
SL4HB 866 MHz 133 MHz 0.18 µm 27.4 W 256 KB 55
SL4HA 866 MHz 133 MHz 0.18 µm 26.8 W 256 KB 55
SL4PZ 866 MHz 133 MHz 0.18 µm 27.4 W 256 KB 55
SL4U2 866 MHz 133 MHz 0.18 µm 27.4 W 256 KB 55
SL3WW 866 MHz 133 MHz 0.18 µm 27.4 W 256 KB 55
SL3WV 866 MHz 133 MHz 0.18 µm 26.8 W 256 KB 55
SL4R9 933 MHz 133 MHz 0.18 µm 29.6 W 256 KB 55
SL3WY 933 MHz 133 MHz 0.18 µm 29.6 W 256 KB 55
SL3WX 933 MHz 133 MHz 0.18 µm 28.9 W 256 KB 55
SL4U3 933 MHz 133 MHz 0.18 µm 29.6 W 256 KB 55
SL4HD 933 MHz 133 MHz 0.18 µm 29.6 W 256 KB 55
SL4HC 933 MHz 133 MHz 0.18 µm 28.9 W 256 KB 55
SL4HE 1 GHz 133 MHz 0.18 µm 30.2 W 256 KB 55
SL4HF 1 GHz 133 MHz 0.18 µm 30.8 W 256 KB 55
SL4Q2 1 GHz 133 MHz 0.18 µm 30.8 W 256 KB 55

[nextpage title=”Xeon”]

This CPU should be called Pentium 4 Xeon, but Intel opted for the name “Xeon”. As we mentioned before, Xeon is a Pentium 4 version targeted to servers and workstations. So it is a 7th generation Intel CPU. The models from Xeon series we’ve seen so far used Intel’s 6th generation architecture, the same used by Pentium Pro.

XeonFigure 3: Xeon processor.

The difference between Xeon and Xeon MP is that the first only allows symmetric multiprocessing up to two CPUs, while the second allows symmetric multiprocessing with four or more CPUs. Actually when it was first released Xeon processor was called “Xeon DP” (meaning “Dual Processing”).

Xeon processors have 8 KB L1 data cache (16 KB on models that have the 64-bit EM64T technology) and a 150 KB L1 trace execution cache. L2 memory cache can be of 512 KB, 1 MB or 2 MB and some models have a L3 memory cache of 1 MB, 2 MB, 4 MB or 8 MB.

In the table below we listed all Xeon models released to date.

SSpec Internal Clock External Clock Tech. TDP L2 Cache L3 Cache Socket Max. Temp. (º C) SSE3 Execute Disable 64-bit Hyper-Threading
SL7ZB 3.80 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8P2 3.80 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL84W 3.66 GHz 667 MHz 90 nm 110 W 1 MB – 604 73 No Yes Yes Yes
SL8UN 3.66 GHz 667 MHz 90 nm 110 W 1 MB – 604 73 No Yes Yes Yes
SL7ZC 3.60 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8P3 3.60 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7ZJ 3.60 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7PH 3.60 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7HK 3.60 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes No No Yes
SL7VF 3.60 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7DZ 3.60 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7ZK 3.40 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8P4 3.40 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7ZD 3.40 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7HJ 3.40 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes No No Yes
SL7DY 3.40 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7PG 3.40 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7TE 3.40 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes No Yes
SL8EY 3.33 GHz 667 MHz 90 nm 129 W 1 MB 8 MB 604 73 No Yes Yes Yes
SL8P5 3.20 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8T3 3.20 GHz 800 MHz 90 nm 90 W 2 MB – 604 72 Yes Yes Yes Yes
SL7ZE 3.20 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8ZP 3.20 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7HH 3.20 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes No No Yes
SL7TD 3.20 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes No Yes
SL7DX 3.20 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7PF 3.20 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL73Q 3.20 GHz 533 MHz 130 nm 92 W 512 KB 1 MB 604 71 No No No Yes
SL7BW 3.20 GHz 533 MHz 130 nm 92 W 512 KB 2 MB 604 71 No No No Yes
SL72Y 3.20 GHz 533 MHz 130 nm 92 W 512 KB 1 MB 604 71 No Yes No Yes
SL7AE 3.20 GHz 533 MHz 130 nm 92 W 512 KB 2 MB 604 71 No Yes No Yes
SL84U 3.16 GHz 667 MHz 90 nm 110 W 1 MB – 604 73 No Yes Yes Yes
SL8UM 3.16 GHz 667 MHz 90 nm 110 W 1 MB – 604 73 No Yes Yes Yes
SL73P 3.06 GHz 533 MHz 130 nm 87 W 512 KB 1 MB 604 70 No No No Yes
SL72G 3.06 GHz 533 MHz 130 nm 87 W 512 KB 1 MB 604 70 No Yes No Yes
SL6VP 3.06 GHz 533 MHz 130 nm 85 W 512 KB – 604 73 No Yes No Yes
SL6GH 3.06 GHz 533 MHz 130 nm 85 W 512 KB – 604 73 No Yes No Yes
SL6RR 3.06 GHz 533 MHz 130 nm 85 W 512 KB – 604 73 No No No Yes
SL6YR 3.06 GHz 533 MHz 130 nm 85 W 512 KB – 604 73 No No No Yes
SL7ZF 3 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8P6 3 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8SV 3 GHz 800 MHz 90 nm 55 W 2 MB – 604 86 Yes Yes Yes Yes
SL8ZQ 3 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7PE 3 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7TC 3 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes No Yes
SL7HG 3 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes No No Yes
SL7DW 3 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes No No Yes
SL8EW 3 GHz 667 MHz 90 nm 129 W 1 MB 8 MB 604 73 No Yes Yes Yes
SL6VW 3 GHz 400 MHz 130 nm 85 W 512 KB – 603 73 No No No Yes
SL6WB 3 GHz 400 MHz 130 nm 85 W 512 KB – 603 73 No Yes No Yes
SL6X4 3 GHz 400 MHz 130 nm 85 W 512 KB – 603 73 No No No Yes
SL6YY 3 GHz 400 MHz 130 nm 85 W 512 KB – 603 73 No No No Yes
SL8ED 2.83 GHz 667 MHz 90 nm 129 W 1 MB 4 MB 604 73 No Yes Yes Yes
SL7ZG 2.80 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8P7 2.80 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL8ZR 2.80 GHz 800 MHz 90 nm 110 W 2 MB – 604 72 Yes Yes Yes Yes
SL7DV 2.80 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes No Yes
SL7HF 2.80 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes No No Yes
SL7PD 2.80 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes Yes Yes
SL7TB 2.80 GHz 800 MHz 90 nm 103 W 1 MB – 604 72 Yes Yes No Yes
SL7D5 2.80 GHz 533 MHz 130 nm 77 W 512 KB 1 MB 604 72 No No No Yes
SL7DG 2.80 GHz 533 MHz 130 nm 77 W 512 KB 1 MB 604 72 No No No Yes
SL6NS 2.80 GHz 533 MHz 130 nm 74 W 512 KB – 604 75 No No No Yes
SL6VN 2.80 GHz 533 MHz 130 nm 74 W 512 KB – 604 75 No No No Yes
SL73N 2.80 GHz 533 MHz 130 nm 77 W 512 KB – 604 72 No No No Yes
SL72F 2.80 GHz 533 MHz 130 nm 77 W 512 KB – 604 72 No No No Yes
SL6YQ 2.80 GHz 533 MHz 130 nm 74 W 512 KB – 604 75 No No No Yes
SL6GG 2.80 GHz 533 MHz 130 nm 74 W 512 KB 1 MB 604 75 No Yes No Yes
SL6Z8 2.80 GHz 400 MHz 130 nm 83 W 512 KB 2 MB 603 69 No No No Yes
SL6WA 2.80 GHz 400 MHz 130 nm 74 W 512 KB – 603 75 No Yes No Yes
SL6M7 2.80 GHz 400 MHz 130 nm 68 W 512 KB – 603 70 No Yes No Yes
SL6MS 2.80 GHz 400 MHz 130 nm 68 W 512 KB – 603 70 No No No Yes
SL6YX 2.80 GHz 400 MHz 130 nm 74 W 512 KB – 603 75 No No No Yes
SL6GF 2.66 GHz 533 MHz 130 nm 72 W 512 KB – 604 74 No Yes No Yes
SL6NR 2.66 GHz 533 MHz 130 nm 72 W 512 KB – 604 74 No No No Yes
SL72E 2.66 GHz 533 MHz 130 nm 77 W 512 KB – 604 72 No No No Yes
SL73M 2.66 GHz 533 MHz 130 nm 77 W 512 KB – 604 72 No No No Yes
SL6VM 2.66 GHz 533 MHz 130 nm 72 W 512 KB – 604 74 No No No Yes
SL6YP 2.66 GHz 533 MHz 130 nm 72 W 512 KB – 604 74 No No No Yes
SL6EQ 2.60 GHz 400 MHz 130 nm 60 W 512 KB – 603 70 No Yes No Yes
SL6W9 2.60 GHz 400 MHz 130 nm 71 W 512 KB – 603 74 No No No Yes
SL6K3 2.60 GHz 400 MHz 130 nm 60 W 512 KB – 603 70 No No No Yes
SL6YW 2.60 GHz 400 MHz 130 nm 71 W 512 KB – 603 74 No No No Yes
SL7DF 2.40 GHz 533 MHz 130 nm 77 W 512 KB 1 MB 604 72 No No No Yes
SL7D4 2.40 GHz 533 MHz 130 nm 77 W 512 KB 1 MB 604 72 No Yes No Yes
SL6GD 2.40 GHz 533 MHz 130 nm 65 W 512 KB – 604 74 No Yes No Yes
SL6YN 2.40 GHz 533 MHz 130 nm 65 W 512 KB – 604 74 No No No Yes
SL6NQ 2.40 GHz 533 MHz 130 nm 65 W 512 KB – 604 74 No No No Yes
SL72D 2.40 GHz 533 MHz 130 nm 77 W 512 KB – 604 72 No No No Yes
SL73L 2.40 GHz 533 MHz 130 nm 77 W 512 KB – 604 72 No No No Yes
SL74T 2.40 GHz 533 MHz 130 nm 65 W 512 KB – 604 74 No No No Yes
SL6VL 2.40 GHz 533 MHz 130 nm 65 W 512 KB – 604 74 No No No Yes
SL6EP 2.40 GHz 400 MHz 130 nm 65 W 512 KB – 603 74 No No No Yes
SL6W8 2.40 GHz 400 MHz 130 nm 65 W 512 KB – 603 74 No No No Yes
SL6YV 2.40 GHz 400 MHz 130 nm 65 W 512 KB – 603 74 No No No Yes
SL687 2.40 GHz 400 MHz 130 nm 65 W 512 KB – 603 71 No No No Yes
SL65T 2.40 GHz 400 MHz 130 nm 65 W 512 KB – 603 71 No Yes No Yes
SL6K2 2.40 GHz 400 MHz 130 nm 65 W 512 KB – 603 74 No No No Yes
SL6JZ 2.20 GHz 400 MHz 130 nm 61 W 512 KB – 603 75 No No No Yes
SL5ZA 2.20 GHz 400 MHz 130 nm 61 W 512 KB – 603 72 No Yes No Yes
SL6W7 2.20 GHz 400 MHz 130 nm 61 W 512 KB – 603 75 No No No Yes
SL6YU 2.20 GHz 400 MHz 130 nm 61 W 512 KB – 603 75 No No No Yes
SL6EN 2.20 GHz 400 MHz 130 nm 61 W 512 KB – 603 75 No No No Yes
SL624 2.20 GHz 400 MHz 130 nm 61 W 512 KB – 603 72 No No No Yes
SL6NP 2 GHz 533 MHz 130 nm 58 W 512 KB – 604 70 No No No Yes
SL6RQ 2 GHz 533 MHz 130 nm 58 W 512 KB – 604 70 No Yes No Yes
SL6VK 2 GHz 533 MHz 130 nm 58 W 512 KB – 604 70 No No No Yes
SL6YM 2 GHz 533 MHz 130 nm 58 W 512 KB – 604 70 No No No Yes
SL72C 2 GHz 533 MHz 130 nm 58 W 512 KB – 604 70 No No No Yes
SL73K 2 GHz 533 MHz 130 nm 58 W 512 KB – 604 70 No No No Yes
SL6JY 2 GHz 400 MHz 130 nm 58 W 512 KB – 603 70 No No No Yes
SL623 2 GHz 400 MHz 130 nm 58 W 512 KB – 603 70 No No No Yes
SL6W6 2 GHz 400 MHz 130 nm 58 W 512 KB – 603 70 No No No Yes
SL6XL 2 GHz 400 MHz 130 nm 58 W 512 KB – 604 70 No No No Yes
SL5Z9 2 GHz 400 MHz 130 nm 58 W 512 KB – 603 70 No Yes No Yes
SL6YT 2 GHz 400 MHz 130 nm 58 W 512 KB – 603 70 No No No Yes
SL6EM 2 GHz 400 MHz 130 nm 58 W 512 KB – 603 70 No No No Yes
SL5TH 2 GHz 400 MHz 180 nm 77.5 W 256 KB – 603 78 No No No No
SL5U8 2 GHz 400 MHz 180 nm 77.5 W 256 KB – 603 78 No No No No
SL6EL 1.80 GHz 400 MHz 130 nm 55.8 W 512 KB – 603 69 No No No Yes
SL6JX 1.80 GHz 400 MHz 130 nm 55 W 512 KB – 603 69 No No No Yes
SL622 1.80 GHz 400 MHz 130 nm 55 W 512 KB – 603 69 No No No Yes
SL6W3 1.80 GHz 400 MHz 130 nm 55 W 512 KB – 603 69 No No No Yes
SL6YS 1.80 GHz 400 MHz 130 nm 55 W 512 KB – 603 69 No No No Yes
SL5Z8 1.80 GHz 400 MHz 130 nm 55 W 512 KB – 603 69 No Yes No Yes
SL56N 1.70 GHz 400 MHz 180 nm 65.8 W 256 KB – 603 73 No No No No
SL5U7 1.70 GHz 400 MHz 130 nm 65.8 W 256 KB – 603 73 No No No No
SL5TE 1.70 GHz 400 MHz 180 nm 65.8 W 256 KB – 603 73 No No No No
SL56H 1.70 GHz 400 MHz 180 nm 65.8 W 256 KB – 603 73 No No No No
SL5TD 1.50 GHz 400 MHz 180 nm 59.2 W 256 KB – 603 70 No No No No
SL4WY 1.50 GHz 400 MHz 180 nm 59.2 W 256 KB – 603 70 No No No No
SL5U6 1.50 GHz 400 MHz 180 nm 59.2 W 256 KB – 603 70 No No No No
SL4ZT 1.50 GHz 400 MHz 180 nm 59.2 W 256 KB – 603 70 No No No No
SL56G 1.40 GHz 400 MHz 180 nm 56 W 256 KB – 603 69 No No No No
SL4WX 1.40 GHz 400 MHz 180 nm 56 W 256 KB – 603 69 No No No No
SL4XU 700 MHz 100 MHz 180 nm 28.9 W 1 MB – 330 65 No No No No

[nextpage title=”Xeon MP”]

As we explained, the difference between Xeon MP and Xeon is the number of supported CPUs for SMP (symmetric multiprocessing): Xeon supports SMP up to two CPUs on the same motherboard and Xeon MP supports up to four CPUs per bus.

It is possible to build servers with more than four Xeon MP CPUs on the same motherboard. In this case the processors should be tied in groups of four – since they only support up to four processors per bus. For example, on a server with eight Xeon MP processors, the first four will be connected to the same bus and the other four will be connected to another bus. The connection between the busses should be done by the chipset.

The main technical features of Xeon MP are:

  • Socket 603.
  • L1 execution trace cache of 150 KB.
  • L1 data cache of 8 KB or 16 KB on the models with EM64T technology (64-bit technology).
  • Direct symmetric multiprocessing (SMP) up to four CPUs.
  • Hyper-Threading technology.

In the table below we listed all Xeon MP models released to date.

TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Internal Clock External Clock Tech. TDP L2 Cache L3 Cache Max. Temp. (° C) SSE3 Execute Disable 64-bit
SL84W 3.66 GHz 667 MHz 90 nm 110 W 1 MB – 73 Yes Yes Yes
SL84UN 3.66 GHz 667 MHz 90 nm 110 W 1 MB – 73 Yes Yes Yes
SL8EY 3.33 GHz 667 MHz 90 nm 129 W 1 MB 8 MB 73 Yes Yes Yes
SL84U 3.16 GHz 667 MHz 90 nm 110 W 1 MB – 73 Yes Yes Yes
SL8UM 3.16 GHz 667 MHz 90 nm 110 W 1 MB – 73 Yes Yes Yes
SL79V 3 GHz 400 MHz 130 nm 85 W 512 KB 4 MB 71 No No No
SL8EW 3 GHz 667 MHz 90 nm 129 W 1 MB 8 MB 73 Yes Yes Yes
SL8ED 2.83 GHz 667 MHz 90 nm 129 W 1 MB 4 MB 73 Yes Yes Yes
SL6YL 2.80 GHz 400 MHz 130 nm 72 W 512 KB 2 MB 69 No No No
SL79Z 2.70 GHz 400 MHz 130 nm 80 W 512 KB 2 MB 70 No No No
SL6Z2 2.50 GHz 400 MHz 130 nm 66 W 512 KB 1 MB 70 No No No
SL6Z7 2.50 GHz 400 MHz 130 nm 66 W 512 KB 1 MB 70 No No No
SL7A5 2.20 GHz 400 MHz 130 nm 65 W 512 KB 2 MB 65 No No No
SL6YJ 2 GHz 400 MHz 130 nm 57 W 512 KB 1 MB 69 No No No
SL6Z6 2 GHz 400 MHz 130 nm 57 W 512 KB 1 MB 69 No No No
SL6KD 2 GHz 400 MHz 130 nm 57 W 512 KB 2 MB 69 No No No
SL66Z 2 GHz 400 MHz 130 nm 57 W 512 KB 2 MB 69 No No No
SL6H2 1.90 GHz 400 MHz 130 nm 55 W 512 KB 1 MB 68 No No No
SL6KC 1.90 GHz 400 MHz 130 nm 55 W 512 KB 1 MB 68 No No No
SL5G8 1.60 GHz 400 MHz 180 nm 72 W 512 KB 1 MB 78 No No No
SL5S4 1.60 GHz 400 MHz 180 nm 72 W 512 KB 1 MB 78 No No No
SL6GZ 1.50 GHz 400 MHz 130 nm 48 W 512 KB 1 MB 67 No No No
SL6KB 1.50 GHz 400 MHz 130 nm 48 W 512 KB 1 MB 67 No No No
SL5RW 1.50 GHz 400 MHz 180 nm 68 W 256 KB 512 KB 76 No No No
SL5G2 1.50 GHz 400 MHz 180 nm 68 W 256 KB 512 KB 76 No No No
SL5FZ 1.40 GHz 400 MHz 180 nm 64 W 256 KB 512 KB 74 No No No
SL5RV 1.40 GHz 400 MHz 180 nm 64 W 256 KB 512 KB 74 No No No

[nextpage title=”Xeon 50xx, 70xx and 71xx Models (Dual-Core)”]

Dual-core technology puts two complete CPUs into the same package. Since dual-core Xeon CPUs 50xx, 70xx and 71xx models also have Hyper-Threading technology – which simulates two CPUs per core – the operating system recognizes each dual-core Xeon processor as four CPUs. So, on a server using two dual-core Xeon CPUs the operating system will recognize eight CPUs (four cores, two per processor, and two logic processors per core).

All dual-core Xeon processors 50xx, 70xx and 71xx models have the following features:

  • Based on Pentium 4 architecture (NetBurst).
  • Dual-core technology.
  • Socket 604 (7xxx models) or 771 (50xx models).
  • SSE3 instruction set.
  • 16 KB L1 data cache and 150 KB trace execution cache.
  • Symmetric multiprocessing of up to two CPUs per motherboard.
  • Execute Disable technology.
  • EM64T technology.
  • Hyper-Threading technology.
  • Virtualization technology.
  • Demand-Based Switching (DBS) technology, except on 5060 and 5063 models.
  • Enhanced SpeedStep technology.

In the table below we listed all dual-core Xeon 50xx, 70xx and 71xx models released to date. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Model Internal Clock External Clock Tecn. TDP L2 Cache

L3 Cache

Max. Temp. (°C) Socket
SL968 5080 3.73 GHz 1,066 MHz 65 nm 130 W 2 MB + 2 MB

–

78 771
– 7150N 3.5 GHz 667 MHz 65 nm 150 W 1 MB + 1 MB

16 MB

– 604
SL9HA 7140M 3.4 GHz 800 MHz 65 nm 150 W 1 MB + 1 MB

16 MB

69 604
SL9HD 7140N 3.33 GHz 667 MHz 65 nm 150 W 1 MB + 1 MB

16 MB

69 604
SL96B 5063 3.2 GHz 1,066 MHz 65 nm 95 W 2 MB + 2 MB

–

68 771
SL96A 5060 3.2 GHz 1,066 MHz 65 nm 130 W 2 MB + 2 MB

–

78 771
SL9HB 7130M 3.2 GHz 800 MHz 65 nm 150 W 1 MB + 1 MB

8 MB

69 604
SL9HE 7130N 3.16 GHz 667 MHz 65 nm 150 W 1 MB + 1 MB

8 MB

69 604
SL8UD 7041 3 GHz 800 MHz 90 nm 165 W 2 MB + 2 MB

–

76 604
SL8UC 7040 3 GHz 667 MHz 90 nm 165 W 2 MB + 2 MB

–

76 604
SL96C 5050 3 GHz 667 MHz 65 nm 95 W 2 MB + 2 MB

–

68 771
SL9HC 7120M 3 GHz 800 MHz 65 nm 95 W 1 MB + 1 MB

4 MB

60 604
SL9HF 7120N 3 GHz 667 MHz 65 nm 95 W 1 MB + 1 MB

4 MB

60 604
SL96D 5040 2.83 GHz 667 MHz 65 nm 95 W 2 MB + 2 MB

–

68 771
SL8UB 7030 2.80 GHz 800 MHz 90 nm 165 W 1 MB + 1 MB

–

76 604
SL8MA – 2.80 GHz 800 MHz 90 nm 135 W 2 MB + 2 MB

–

72 604
SL8UA 7020 2.66 GHz 667 MHz 90 nm 165 W 1 MB + 1 MB

–

76 604
SL9Q9 7110M 2.6 GHz 800 MHz 65 nm 95 W 1 MB + 1 MB

4 MB

60 604
SL9QA 7110N 2.5 GHz 667 MHz 65 nm 95 W 1 MB + 1 MB

4 MB

60 604

[nextpage title=”Xeon 30xx, 51xx and 72xx Models (Dual-Core)”]

Xeon 30xx, 51xx and 72xx processors are based on the latest Intel microarchitecture, Core, the same used by Core 2 Duo processors. These CPUs were known in the past as Woodcrest, Intel codename for this CPU generation. If you want to learn more about the new Core microarchitecture, read our tutorial on this subject.

Keep in mind that dual-core Xeon from the series described on the previuos page (50xx, 70xx and 71xx) are based on Pentium 4 microarchitecture (NetBurst) carrying Hyper-Threading technology, which is not available on Core microarchitecture.

All Xeon 30xx, 51xx and 72xx series have the following features:

  • Core microarchitecture
  • Dual-core technology
  • 65 nm manufacturing process
  • Socket 604 (72xx models), 771 (51xx models) or 775 (30xx models)
  • SSE3 Instruction Set
  • 32 KB L1 instruction cache and 32 KB L1 data cache.
  • 4 MB L2 cache shared by the two cores
  • Execute Disable technology
  • EM64T technology
  • Virtualization technology
  • Demand-Based Switching (DBS) technology on 5140, 5148, 5150 and 5160 models.
  • Enhanced SpeedStep technology
  • Dual Independent Bus (DIB) Technology, where each core has its own external bus instead of the two cores sharing the same external bus.

Below you can find all Xeon 30xx, 51xx and 72xx models released to date. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Model Internal Clock External Clock

TDP

L2 Cache

Max. Temp. (°C)

Socket
SL9RT 5160 3 GHz 1,333 MHz

80 W

4 MB

56.5

771
SLAG9 5160 3 GHz 1,333 MHz

80 W

4 MB

65

771
SLABS 5160 3 GHz 1,333 MHz

80 W

4 MB

65

771
SLA6C E7220 2.93 GHz 1,066 MHz 80 W 8 MB 66 604
SLABM 5150 2.66 GHz 1,333 MHz

65 W

4 MB

65

771
SL9RU 5150 2.66 GHz 1,333 MHz

65 W

4 MB

65

771
SLAGA 5150 2.66 GHz 1,333 MHz

65 W

4 MB

65

771
SL9U2 3070 2.66 GHz 1,066 MHz 65 W 4 MB 60 775
SLACC 3070 2.66 GHz 1,066 MHz 65 W 4 MB 60 775
SL9ZC 3070 2.66 GHz 1,06
6 MHz
65 W 4 MB 60 775
SLA6D E7210 2.40 GHz 1,066 MHz 80 W 8 MB 66 604
SL9TZ 3060 2.40 GHz 1,066 MHz 65 W 4 MB 60 775
SLACD 3060 2.40 GHz 1,066 MHz 65 W 4 MB 60 775
SL9ZH 3060 2.40 GHz 1,066 MHz 65 W 4 MB 60 775
SL9RW 5140 2.33 GHz 1,333 MHz

95 W

4 MB

68

771
SLABH 5148 2.33 GHz 1,333 MHz

40 W

4 MB

58

771
SLAG4 5148 2.33 GHz 1,333 MHz

40 W

4 MB

58

771
SLAGB 5140 2.33 GHz 1,333 MHz

65 W

4 MB

65

771
SL9RR 5148 2.33 GHz 1,333 MHz

40 W

4 MB

65

771
SLABN 5140 2.33 GHz 1,333 MHz

65 W

4 MB

65

771
SL9RN 5138 2.13 GHz 1066 MHz

35 W

4 MB

70.8

771
SLAG3 5138 2.13 GHz 1066 MHz

65 W

4 MB

65

771
SLAGC 5130 2 GHz 1,333 MHz

65 W

4 MB

65

771
SL9RX 5130 2 GHz 1,333 MHz

65 W

4 MB

65

771
SLABP 5130 2 GHz 1,333 MHz

65 W

4 MB

65

771
SLABQ 5120 1.86 GHz 1066 MHz

65 W

4 MB

65

771
SLAGD 5120 1.86 GHz 1066 MHz

65 W

4 MB

65

771
SLAG6 5128 1.86 GHz 1066 MHz

40 W

4 MB

58

771
SL9RY 5120 1.86 GHz 1066 MHz

65 W

4 MB

65

771
SL9XA 5128 1.86 GHz 1066 MHz

40 W

4 MB

58

771
SLAGE 5110 1.60 GHz 1066 MHz

65 W

4 MB

65

771
SL9RZ 5110 1.60 GHz 1066 MHz

65 W

4 MB

65

771
SLABR 5110 1.60 GHz 1066 MHz

65 W

4 MB

65

771

[nextpage title=”Xeon 31xx and 52xx Models (Dual-Core)”]

Xeon 31xx and 52xx processors, like 30xx, 51xx and 72xx models, are based on Core Microarchitecture, the same used by Core 2 Duo processors (to learn more about Core microarchitecture read our tutorial on this subject). The main difference between these models is the manufacturing process employed. While 30xx, 51xx and 72xx models use the 65 nm manufacturing process, 31xx and 52xx models use the new 45 nm process. This manufacturing process is also known by its codename Penryn. To learn more about this manufacturing process, read our Details on Intel’s Forthcoming 45 nm Manufacturing Technology and Penryn Core New Features articles. Notice that Penryn is the codename of the manufacturing process, not of the processor. The codename of Xeon 31xx and 52xx processors is Wolfdale.

There are other differences between Xeon 31xx and 52xx and the other Xeon CPUs based on Core microarchitecture described in the previous page besides the manufacturing process: the new SSE4 instruction set and a larger L2 memory cache.

All Xeon 31xx and 52xx processors have the following features:

  • Core microarchitecture
  • Dual-core technology
  • 45 nm manufacturing process
  • Socket 771 (52xx models) or 775 (31xx models)
  • SSE4 Instruction Set
  • 32 KB L1 instruction cache and 32 KB L1 data cache per core.
  • 6 MB L2 cache shared by the two cores
  • Execute Disable technology
  • EM64T technology
  • Virtualization technology
  • Demand-Based Switching (DBS) technology
  • Enhanced SpeedStep technology

Below you can find all Xeon 31xx and 52xx models released to date. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Model Internal Clock External Clock TDP Max. Temp. (°C) Socket
SLANH X5272 3.4 GHz 1,600 MHz 80 W 66 771
SLANJ X5260 3.33 GHz 1,333 MHz 80 W 66 771
N/A E3110 3 GHz 1,333 MHz 65 W N/A 775
SLANG E5205 1.86 GHz 1,066 MHz 65 W 66 771

[nextpage title=”Xeon 32xx, 53xx and 73xx Models (Quad-Core, 65nm)”]

Xeon 32xx, 53xx and 73xx processors are based on Core microarchitecture and have four processing cores. These four cores are obtained from two dual-core dies. Because of that the L2 memory cache from these processors isn’t shared between all cores: cores 1 and 2 share the same L2 cache, while cores 3 and 4 share another L2 cache. The L2 m
emory cache size announced is the total amount of L2 cache available (i.e., the sum of the two caches). Read our Intel Quad-Core Overview and Roadmap article for a more detailed explanation on the architecture used by these CPUs.

All Xeon 53xx and 73xx series have the following features:

  • Core microarchitecture
  • Quad-core technology
  • 65 nm manufacturing process
  • Socket 604 (53xx and 73xx models) or 775 (32xx models)
  • SSE3 Instruction Set
  • 32 KB L1 instruction cache and 32 KB L1 data cache.
  • 4 MB, 6 MB or 8 MB L2 memory cache.
  • Execute Disable technology
  • EM64T technology
  • Virtualization technology
  • Enhanced SpeedStep technology

Below you can find all Xeon 53xx and 73xx models released to date. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Model Internal Clock External Clock L2 Cache

TDP

Max. Temp. (°C)

Socket
SLA67 X7350 2.93 GHz 1,066 MHz 8 MB

130 W

66

604
SLAC4 X5355 2.66 GHz 1,333 MHz 8 MB

120 W

70

604
SLAEG X5355 2.66 GHz 1,333 MHz 8 MB

120 W

63

604
SL9YM X5355 2.66 GHz 1,333 MHz 8 MB

120 W

65

604
SLACS X3230 2.66 GHz 1,066 MHz 4 MB 100 W 85 775
SLA68 E7340 2.40 GHz 1,066 MHz 8 MB

80 W

66

604
SLA77 E7330 2.40 GHz 1,066 MHz 6 MB

80 W

66

604
SLACT X3230 2.40 GHz 1,066 MHz 4 MB 100 W 85 775
SL9UP X3230 2.40 GHz 1,066 MHz 4 MB 100 W 85 775
SLAC5 E5345 2.33 GHz 1,333 MHz 8 MB

80 W

66

604
SLAEJ E5345 2.33 GHz 1,333 MHz 8 MB

80 W

66

604
SL9YL E5345 2.33 GHz 1,333 MHz 8 MB

80 W

65

604
SLA69 E7320 2.13 GHz 1,066 MHz 8 MB

80 W

66

604
SL9UQ X3210 2.13 GHz 1,066 MHz 4 MB 105 W 62 775
SLACU X3210 2.13 GHz 1,066 MHz 4 MB 100 W 85 775
SLAEN L5335 2 GHz 1,333 MHz 8 MB

50 W

60

604
SLAC7 E5335 2 GHz 1,333 MHz 8 MB

80 W

66

604
SLAEK E5335 2 GHz 1,333 MHz 8 MB

80 W

66

604
SLA6B L7345 1.86 GHz 1,066 MHz 8 MB

50 W

66

604
SLA4Q L5320 1.86 GHz 1,066 MHz 8 MB

50 W

60

604
SLAEL E5320 1.86 GHz 1,066 MHz 8 MB

80 W

66

604
SL9MV E5320 1.86 GHz 1,066 MHz 8 MB

80 W

65

604
SLAC9 L5320 1.86 GHz 1,066 MHz 8 MB

50 W

60

604
SLAEP L5320 1.86 GHz 1,066 MHz 8 MB

50 W

60

604
SLAC8 E5320 1.86 GHz 1,066 MHz 8 MB

80 W

66

604
SLA6A E7310 1.60 GHz 1,066 MHz 4 MB

80 W

66

604
SL9MT L5310 1.60 GHz 1,066 MHz 8 MB

50 W

60

604
SL9XR E5310 1.60 GHz 1,066 MHz 8 MB

80 W

65

604
SLAEM E5310 1.60 GHz 1,066 MHz 8 MB

80 W

66

604
SLAEQ L5310 1.60 GHz 1,066 MHz 8 MB

50 W

60

604
SLACB E5310 1.60 GHz 1,066 MHz 8 MB

80 W

66

604
SLACA L5310 1.60 GHz 1,066 MHz 8 MB

50 W

60

604

[nextpage title=”Xeon 33xx and 54xx Models (Quad-Core, 45 nm)”]

Xeon 33xx and 54xx processors, like 32xx, 53xx and 73xx
models, are based on Core Microarchitecture, the same used by Core 2 Duo processors (to learn more about Core microarchitecture read our tutorial on this subject). The main difference between these models is the manufacturing process employed. While 32xx, 52xx and 73xx models use the 65 nm manufacturing process, 33xx and 54xx models use the new 45 nm process. This manufacturing process is also known by its codename Penryn. To learn more about this manufacturing process, read our Details on Intel’s Forthcoming 45 nm Manufacturing Technology and Penryn Core New Features articles. Notice that Penryn is the codename of the manufacturing process, not of the processor. The codename of Xeon 33xx processors is Yorkfield, while the codename of 52xx processors is Hapertown.

There are other differences between Xeon 33xx and 54xx and the other Xeon CPUs based on Core microarchitecture described in the previous page besides the manufacturing process: the new SSE4 instruction set and a larger L2 memory cache.

The four cores available on Xeon 33xx and 54xx processors are obtained from two dual-core dies, just like the models described in the previous page. Because of that the L2 memory cache from these processors isn’t shared between all cores: cores 1 and 2 share the same L2 cache, while cores 3 and 4 share another L2 cache. The announced L2 cache size is the total amount of L2 cache available. Read our Intel Quad-Core Overview and Roadmap article for a more detailed explanation on the architecture used by these CPUs.

All Xeon 33xx and 54xx processors have the following features:

  • Core microarchitecture
  • Quad-core technology
  • 45 nm manufacturing process
  • Socket 771 (54xx models) or 775 (33xx models)
  • SSE4 Instruction Set
  • 32 KB L1 instruction cache and 32 KB L1 data cache per core.
  • 6 MB or 12 MB L2 cache
  • Execute Disable technology
  • EM64T technology
  • Virtualization technology
  • Demand-Based Switching (DBS) technology
  • Enhanced SpeedStep technology

Below you can find all Xeon 33xx and 54xx models released to date. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation, i.e., the CPU cooler must be able to dissipate at least this amount of heat.

sSpec Model Internal Clock External Clock L2 Cache TDP Max. Temp. (°C) Socket
SLANZ X5482 3.20 GHz 1,600 MHz 12 MB 150 W 70 771
SLANP X5460 3.16 GHz 1,333 MHz 12 MB 120 W 70 771
SLANR E5472 3 GHz 1,600 MHz 12 MB 80 W 67 771
SLANQ E5450 3 GHz 1,333 MHz 12 MB 80 W 67 771
SLASA X5472 3 GHz 1,600 MHz 12 MB 120 W 70 771
SLASB X5450 3 GHz 1,333 MHz 12 MB 120 W 70 771
SLANS E5440 2.83 GHz 1,333 MHz 12 MB 80 W 67 771
N/A X3360 2.83 GHz 1,333 MHz 12 MB 95 W N/A 775
SLANT E5462 2.80 GHz 1,600 MHz 12 MB 80 W 67 771
SLANU E5430 2.66 GHz 1,333 MHz 12 MB 80 W 67 771
N/A X3350 2.66 GHz 1,333 MHz 12 MB 95 W N/A 775
SLANV E5420 2.50 GHz 1,333 MHz 12 MB 80 W 67 771
N/A X3320 2.50 GHz 1,333 MHz 6 MB 95 W N/A 775
SLANW E5410 2.33 GHz 1,333 MHz 12 MB 80 W 67 771
SLAP2 E5405 2 GHz 1,333 MHz 12 MB 80 W 67 771

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

car service

Why Is Fleet Maintenance Important?

If you have a fleet of vehicles you use within your business, it’s crucial you keep up with their

Playing Fifa on Play station 4

Tips for Recycling Your Gaming Consoles and Devices

These days, it seems like almost everybody is gaming. As great as this is, it’s also creating a

Business planning

How to Develop Your Venture Capital Business

Venture Capital (VC) is a type of private equity investment in which investors provide funding to

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact