• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures

Let’s take a look at how the dual-, triple-, and quad-channel memory architectures work and how to enable them in order to improve your computer’s performance.

Home » Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures

Introduction

Contents

  • 1. Introduction
  • 2. Bandwidth
  • 3. Dual-Channel Architecture
  • 4. Enabling Dual Channel
  • 5. Enabling Dual Channel (Intel and AMD Socket AM3+)
  • 6. Enabling Dual Channel (Other AMD Sockets)
  • 7. Triple-Channel Architecture
  • 8. Quad-Channel Architecture
  • 9. Checking if it is Correctly Enabled

The system’s RAM (Random Access Memory) prevents the PC from achieving its maximum capable performance. This occurs because the processor (CPU) is faster than the RAM, and usually it has to wait for the RAM to deliver data. During this wait time the CPU is idle, doing nothing (that’s not entirely true, but it fits our explanation). In a perfect computer, the RAM would be as fast as the CPU. Dual-, triple-, and quad-channel are techniques used to double, triple, or quadruple the communication speed between the memory controller and the RAM, thus increasing the system performance. In this tutorial, we will explain everything you need to know about these technologies: how they work, how to set them up, how to calculate transfer speeds, and more.
Before going further, let’s first explain how the RAM is traditionally connected to the system.

Preview Product
Intel Pentium G Series 3.50 GHz Dual-Core LGA 1151 Processor (BX80677G4560) Intel Pentium G Series 3.50 GHz Dual-Core LGA 1151 Processor (BX80677G4560) Buy on Amazon
AMD Ryzen 3 2200G Processor with Radeon Vega 8 Graphics - YD2200C5FBBOX AMD Ryzen 3 2200G Processor with Radeon Vega 8 Graphics - YD2200C5FBBOX Buy on Amazon
Intel BX80662I76700K 4512 Core i7 6700K 4.00 GHz Unlocked Quad Core Sky Lake Desktop Processor, Socket LGA 1151 Intel BX80662I76700K 4512 Core i7 6700K 4.00 GHz Unlocked Quad Core Sky Lake Desktop Processor,... Buy on Amazon

The RAM is controlled by a circuit called a memory controller. Currently, most processors have this component embedded, so the CPU has a dedicated memory bus connecting the processor to the RAM. On older CPUs, however, this circuit was located inside the motherboard chipset, in the north bridge chip. (This chip is also known as MCH or Memory Controller Hub.) In this case, the CPU doesn’t “talk” directly to the RAM; the CPU “talks” to the north bridge chip, and this chip “talks” to the memory. The first option provides better performance, since there is no “middleman” in the communications between the CPU and the memory. In Figures 1 and 2, we compare the two approaches.

How the RAM is accessed on CPUs with an integrated memory controllerFigure 1: How the RAM is accessed on CPUs with an integrated memory controller

How the RAM is accessed on CPUs without an integrated memory controllerFigure 2: How the RAM is accessed on CPUs without an integrated memory controller

The RAM is connected to the memory controller through a series of wires, collectively known as a “memory bus.” These wires are divided into three groups: data, address, and control. The wires from the data bus will carry data that is being read (transferred from the memory to the memory controller) or written (transferred from the memory controller to the memory, i.e., coming out of the CPU). The wires from the address bus tell the memory modules exactly where (which address) that data must be retrieved or stored. The control wires send commands to the memory modules, telling them what kind of operation is being done – for example, if it is a write (store) or a read operation. Another important wire present on the control bus is the memory clock signal.
The memory speeds (clock rates), maximum capacity per memory module, total maximum capacity, and types (DDR, DDR2, DDR3, etc.) that a system can accept is defined by the memory controller. For example, if a given memory controller only supports DDR3 memories up to 1,333 MHz, you won’t be able to install DDR2 memories, and if you install DDR3 memories above 1,333 MHz (e.g., 1,866 MHz or 2,133 MHz modules), they will be accessed at 1,333 MHz. (An exception to this rule is when the motherboard allows you to configure the RAM at a clock rate above the official maximum supported by the memory controller. For a real example, current Intel CPUs support memories up to 1,333 MHz, but several motherboards will allow you to configure clock rates up to 2,133 MHz.)
The discussion about clock rates is really important, because the clock rate defines the available bandwidth, which is our next subject.

Last update on 2022-03-17 at 17:02 / Affiliate links / Images from Amazon Product Advertising API

Continue: Bandwidth

Memory Tutorials

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

audio connectors on a motherboard (right) and ethernet + usb connectors (left)

How On-Board Audio Works

Learn how the sound card that comes embedded on your motherboard works.

How To Connect Your PC to Your Home Stereo or Home Theater

Learn how to hook your PC to your stereo or receiver in order to enhance you audio experience while playing games, watching videos, listening to music or even editing audio.

motherboard

Which is the best motherboard for Coffee Lake CPUs?

We compared seven different motherboards for Intel eighth-gen (Coffee Lake) CPUs, to help you to choose which one is the best for you. Check it out!

RAM Install

Does more RAM make difference in gaming performance?

Does installing more RAM in your computer improves gaming performance? We tested some recent games with 4 GiB, 8 GiB, and 16 GiB to find out. Check it out!

How to Refill Epson Cartridges

Learn how to reset the Epson cartridge chip, allowing you to refill the cartridge.

Footer

For Performance

  • PCI Express 3.0 vs. 2.0: Is There a Gaming Performance Gain?
  • Does dual-channel memory make difference on integrated video performance?
  • Overclocking Pros and Cons
  • All Core i7 Models
  • Understanding RAM Timings

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • Everything You Need to Know About the SPDIF Connection
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU C-States Power Saving Modes

Follow Us

Follow us on Facebook Follow us on Twitter Follow us on Instagram

Copyright © 2022 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact