• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

Zalman ZM460B-APS 460 W Power Supply Review

Today we are going to test this mainstream 460 W power supply from Zalman. Is it a good product? Can it really deliver its labeled power?

Home » Zalman ZM460B-APS 460 W Power Supply Review

Primary Analysis

Contents

  • 1. Introduction
  • 2. A Look Inside The ZM460-APS
  • 3. Transient Filtering Stage
  • 4. Primary Analysis
  • 5. Secondary Analysis
  • 6. Power Distribution
  • 7. Load Tests
  • 8. Overload Tests
  • 9. Main Specifications
  • 10. Conclusions

On this page we will take an in-depth look at the primary stage of Zalman ZM460-APS. For a better understanding, please read our Anatomy
of Switching Power Supplies
tutorial.

This power supply uses one GBU805 rectifying bridge in its primary, capable of delivering up to 8 A at 100° C. Zalman ZM360-APS uses a bridge with lower current limit (GBU606, which is a 6 A component), while SilverStone Strider ST50F uses a similar bridge with the same current limit but a higher voltage limit (GBU806). This bridge is more than adequate for a 460 W product: at 115 V this unit would be able to pull only up to 920 W from the power grid; assuming 80% efficiency, the bridge would allow this unit to deliver up to 736 W without burning this component. Of course we are only talking about this component and the real limit will depend on all other components from the power supply. This bridge is attached to the same heatsink where the switching transistors are located.

Zalman ZM460B-APS 460 W Power SupplyFigure 8: Rectifying bridge.

For the active PFC circuit Zalman ZM460-APS uses two SPA20N60C3 transistors, which one capable of delivering up to 20.7 A at 25° C or 13.1 A at 100° C in continuous mode (note the difference temperature makes) or up to 62.1 A in pulse mode. These are the same transistors used by SilverStone Strider ST50F, but Zalman ZM360-APS uses different transistors here, with lower current limits (STP14NK50ZFP: 14 A at 25° C, 7.6 A at 100° C and 48 A at 25° C in pulse mode).

Zalman ZM460B-APS 460 W Power SupplyFigure 9: Active PFC transistors and diode.

The active PFC capacitor is from CapXon, a Taiwanese company, and rated at 85° C.

In the switching section, two FQPF18N50V2 power MOSFETs are used on the traditional two-transistor forward configuration. Each transistor is capable of delivering up to 18 A at 25° C or 12.1 A at 100° C in continuous mode, or up to 72 A at 25° C in pulse mode. These transistors are different from the ones used Zalman ZM360-APS and SilverStone Strider ST50F: ZM360APS uses two FQPF9N50C (9 A at 25° C, 5.4 A at 100° C and 36 A at 25° C in pulse mode) while SilverStone Strider ST50F uses two STF21NM50N (18 A at 25°, 11 A at 100° C and 72 A at 25° in pulse mode). As you can see while the transistors used on ZM460-APS and ST50F are different, they have similar specs, even though the ones used on ZM460-APS can deliver a little bit more current at 100° C, which is interesting.

Zalman ZM460B-APS 460 W Power SupplyFigure 10: The two switching transistors.

The primary is controlled by the omnipresent CM6800 PWM/PFC controller combo.

Zalman ZM460B-APS 460 W Power SupplyFigure 11: PWM/PFC controller.

Now let’s analyze the secondary section from ZM460-APS.

Continue: Secondary Analysis

Power Reviews

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

How to Avoid Scams on Facebook Marketplace Once and For All

Social media scams generate more than 770 million US dollars in losses in the US alone, and it’s … [Read More...] about How to Avoid Scams on Facebook Marketplace Once and For All

AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

AMD, together with Intel, is one of the major processor manufacturers known in today's market. … [Read More...] about AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

Valorant Phoenix Tips & Tricks You Have to Know

The Phoenix character in Valorant is one of the most amazing to play. Being aggressive, Phoenix will … [Read More...] about Valorant Phoenix Tips & Tricks You Have to Know

Footer

For Performance

  • About
  • Contact
  • Articles
  • Editorials
  • First Look
  • Reviews
  • Tutorials
  • Privacy

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact