• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

Zalman ZM460B-APS 460 W Power Supply Review

Today we are going to test this mainstream 460 W power supply from Zalman. Is it a good product? Can it really deliver its labeled power?

Home » Zalman ZM460B-APS 460 W Power Supply Review

Overload Tests

Contents

  • 1. Introduction
  • 2. A Look Inside The ZM460-APS
  • 3. Transient Filtering Stage
  • 4. Primary Analysis
  • 5. Secondary Analysis
  • 6. Power Distribution
  • 7. Load Tests
  • 8. Overload Tests
  • 9. Main Specifications
  • 10. Conclusions

Before overloading power supplies we always test first if the over current protection (OCP) circuit is active and at what level it is configured. For this test we configured our load tester to pull 1 A from each output (0.5 A for -12 V) and increased current at +12V2 until the power supply shut down. This happened when we tried to pull more than 20 A from it. The label says this output has a maximum capacity of 18 A so the OCP from this power supply is configured the way we like: close to what is printed on the power supply label.

Below you can see the maximum values we could pull from this power supply. Far more than that the unit wouldn’t even turn on and if we tried to pull a little bit more current than that (19 A from each +12 V rail) the unit would shut down after one minute. It is always nice to see the power supply protections kicking in. During this overloading noise level was still inside specs and in fact increased just a little bit, to 24 mV at +12V1, +5 V and +3.3 V, with +12V2 at 72.8 mV.

Input Maximum
+12V1 18 A (216 W)
+12V2 18 A (216 W)
+5V 10 A (50 W)
+3.3 V 10 A (33 W)
+5VSB 2.5 A (12.5 W)
-12 V 0.5 A (6 W)
Total 530.5 W
% Max Load 115.3%
Room Temp. 48.8° C
PSU Temp. 53.0° C
AC Power 669 W
Efficiency 79.3%

As you can see under this scenario efficiency dropped below the 80% level.

Continue: Main Specifications

Power Reviews

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

How to Avoid Scams on Facebook Marketplace Once and For All

Social media scams generate more than 770 million US dollars in losses in the US alone, and it’s … [Read More...] about How to Avoid Scams on Facebook Marketplace Once and For All

AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

AMD, together with Intel, is one of the major processor manufacturers known in today's market. … [Read More...] about AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

Valorant Phoenix Tips & Tricks You Have to Know

The Phoenix character in Valorant is one of the most amazing to play. Being aggressive, Phoenix will … [Read More...] about Valorant Phoenix Tips & Tricks You Have to Know

Footer

For Performance

  • About
  • Contact
  • Articles
  • Editorials
  • First Look
  • Reviews
  • Tutorials
  • Privacy

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact