We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.

[nextpage title=”Introduction”]

Since its launch, in April, 1998, Intel Celeron processor has been going through some changes. The name Celeron is used by Intel to denominate its low cost line of processors. In fact, Celeron is an economic version of Intel top processors. In other words, Celeron is a simplified version of Pentium II, Pentium III, Pentium 4 or Core 2 Duo, with some of its features being reduced or removed. Celeron models already launched and top processors in which they are based on are listed below:

Model Codename Based on Cores L1 Cache L2 Cache Technology External Bus Socket
Celeron SEPP Convington Pentium IIDeschutes core 1 32 KB 0.25 µm 66 MHz Slot 1
Celeron A Mendocino Pentium II Deschutes core 1 32 KB 128 KB 0.25 µm 66 MHz Slot 1
Celeron PPGA Mendocino Pentium II Deschutes core 1 32 KB 128 KB 0.25 µm or 0.18 µm

66 MHz Socket 370
Celeron Coppermine Coppermine Pentium III Coppermine core 1 32 KB 128 KB 0.18 µm 66MHz or 100MHz Socket 370
Celeron Tualatin Tualatin Pentium IIITualatin core 1 32 KB 256 KB 0.13 µm 100 MHz Socket 370
Celeron Willamette Willamette Pentium 4 Willamette core 1 8 KB 128 KB 0.18 µm 400 MHz Socket 478
Celeron Northwood Northwood Pentium 4Northwood core 1 8 KB 128 KB 0.13 µm 400 MHz Socket 478
Celeron D Prescott Pentium 4 Prescott core 1 16 KB 256 KB 90 nm or 65 nm 533 MHz Socket 478 or Socket LGA775
Celeron 400 Series Conroe-L Core 2 Duo 1 64 KB 512 KB 65 nm 800 MHz Socket LGA775
Celeron E1000 Series Allendale Core 2 Duo 2 64 KB 512 KB 65 nm 800 MHz Socket LGA775
Celeron E3000 Series Penryn Core 2 Duo 2 64 KB 1 MB 45 nm 800 MHz Socket LGA775

Celeron distinguishes itself from Pentium II, Pentium III, Pentium 4 or Core 2 Duo basically in three aspects:

  • L2 memory cache size
  • Internal clock
  • External bus clock

Because of these differences Celeron is cheaper and of low-performance, compared to the Pentium II, Pentium III, Pentium 4 and Core 2 Duo processors, thus it fits well to domestic users market or to those who don’t need great power in the computer.

[nextpage title=”Convington (Celeron SEPP)”]

The first Celeron processor to be launched was an economic version of Pentium II Deschutes core. It had 32KB of L1 cache, no L2 cache, MMX technology, worked externally with 66 MHz, and was found in a printed circuit board called SEPP (Single Edge Processor Package), which was connected to the slot 1 motherboard, and was available at speeds of 266 MHz and 300 MHz.

The motherboard used by this Celeron version was the same used by the Pentium II and first Pentium III processors.

All Celeron Models

Figure 1: Celeron processor with SEPP package.

Main features of Celeron SEPP were:

  • Based on Pentium II with Deschutes core
  • Manufacturing process: 0.25 μm
  • L1 cache: 32 KB total, 16 KB for instructions and 16 KB for data
  • L2 cache: not available (0 KB)
  • External clock rate: 66 MHz
  • Packaging: SEPP
  • Socket: Slot 1

Available models of SEPP Celeron are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

Model Internal Clock Voltage TDP 
SL2YN  266 MHz 2 V 16.59 W
SL2QG  266 MHz 2 V 16.59 W
SL2SY  266 MHz 2 V 16.59 W
SL2TR  266 MHz 2 V 16.59 W
SL2X8  300 MHz 2 V 18.48 W
SL2Y2  300 MHz 2 V 18.48 W
SL27Z  300 MHz 2 V 18.48 W
SL2YP  300 MHz 2 V 18.48 W
SL2Z7  300 MHz 2 V 18.48 W

[nextpage title=”Mendocino (Celeron A)”]

The original Celeron was terrible. Because of no L2 cache present, its performance was less than tolerable. Thus, Intel decided to launch Celeron A, which was different from the original Celeron on its L2 cache with 128KB running at the processor speed. Actually, Celeron A was the first processor for PCs to have a L2 cache integrated in the processor.

The first version of Celeron A worked with a clock of 300 MHz. In order to differentiate from the original Celeron of 300 MHz (with no L2 cache), Intel added the letter “A” after the number. Therefore, the Celeron A 300MHz version is known as 300A.

All Celeron Models

Figure 2: Detail of the Celeron 300A marking, with 128KB on-die L2 cache.

Main features of Celeron A were:

  • Based on Pentium II with Deschutes core
  • Manufacturing process: 0.25 μm
  • L1 cache: 32 KB total, 16 KB for instructions and 16 KB for data
  • L2 cache: 128 KB
  • External clock rate: 66 MHz
  • Packaging: SEPP
  • Socket: Slot 1

Available models of Celeron A are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

Model  Internal Clock Voltage   TDP
SL2WM  300 MHz 2 V 19.05 W 
SL32A  300 MHz 2 V 19.05 W 
SL32B  333 MHz 2 V 20.94 W 
SL2WN  333 MHz 2 V 20.94 W 
SL376  366 MHz 2 V 21.7 W 
SL37Q  366 MHz 2 V 21.7 W 
SL37V  400 MHz 2 V 23.7 W 
SL39Z  400 MHz 2 V 23.7 W 

[nextpage title=”Mendocino (Celeron PPGA)”]

As of the launch of Pentiu
m II, Intel started to produce its processors in the form of cartridge instead of sockets. This was the way found by Intel to transfer L2 cache, which was located on the motherboard, to the inside of the processor. In fact, L2 cache was not built-in the processor, but soldered on the same printed circuit board of the processor.

Intel had already tried before to bring L2 cache to the inside of the processor with Pentium Pro. The problem was that this solution was expensive, since there were two cores installed in the same package: one with the Pentium Pro processor and the other with 256 KB, 512 MB or 1 MB of L2 cache.

The cartridge idea didn’t work out and, in August, 1998, Intel started to produce its processors using sockets once again. The processors based on cartridge were expensive because they demanded retention mechanisms and bigger and more elaborated coolers.

Celeron PPGA was a Celeron A model developed to be installed in a socket instead of a slot. It had PPGA packaging and was installed in socket 370 motherboards. Celeron PPGA was also based in Pentium II Deschutes core processor and could be found at speeds of 300 MHz, 333 MHz, 366 MHz, 400 MHz, 433 MHz, 466 MHz, 500 MHz and 533 MHz.

All Celeron Models

Figure 3: Celeron A with PPGA package.

Celeron PPGA can be installed in slot 1 motherboards through an adapter board, presented in Figure 4.

All Celeron Models

Figure 4: Adaptor board to install the Celeron PPGA on a slot 1 motherboard.

Main features of Celeron PPGA were:

  • Based on Pentium II with Deschutes core
  • Manufacturing process: 0.25 μm or 0.18 μm
  • L1 cache: 32 KB total, 16 KB for instructions and 16 KB for data
  • L2 cache: 128 KB
  • External clock rate: 66 MHz
  • Packaging: PPGA
  • Socket: Socket 370

Available models of Celeron PPGA are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation. 

Model  Internal Clock Voltage  TDP  Technology 
SL36A  300 MHz 2 V 19.05 W  0.18 µm
SL35Q  300 MHz 2 V 19.05 W  0.18 µm
SL35R  333 MHz 2 V 20.94 W  0.25 µm
SL36B  333 MHz 2 V 20.94 W  0.25 µm
SL35S  366 MHz 2 V 21.7 W  0.25 µm
SL36C  366 MHz 2 V 21.7 W  0.25 µm
SL37X  400 MHz 2 V 23.7 W  0.25 µm
SL3A2  400 MHz 2 V 23.7 W  0.25 µm
SL3BA  433 MHz 2 V 24.1 W  0.25 µm
SL3BS  433 MHz 2 V 24.1 W  0.25 µm
SL3EH  466 MHz 2 V 25.7 W  0.25 µm
SL3FL  466 MHz 2 V 25.7 W  0.25 µm
SL3LQ  500 MHz 2 V 27.2 W  0.25 µm
SL3FZ  533 MHz 2 V 28.3 W  0.25 µm
SL3PZ  533 MHz 2 V 28.3 W  0.25 µm

[nextpage title=”Coppermine”]

Celeron Coppermine was based on Pentium III Coppermine core architecture and had approximately 28 millions of transistors. This was a huge figure, since Celeron SEPP had 7.5 million transistors and Celeron A had only 19 million. This increase in the number of transistors is due to the production technology used on Celeron Coppermine, which was of 0.18µm (the previous versions used a 0.25µm technology). The smaller the technology architecture, the fewer will be the heat generated by the processor and the bigger will be the clock it can reach.

The packaging used by Celeron Coppermine was FC-PGA, the same kind used by Pentium III, and it also used the socket 370 platform.

Celeron Coppermine had 32 KB of L1 cache, 128 KB of L2 cache, and a support to SSE instructions and could be found on versions ranging from 533 MHz to 1.1 GHz. All Celeron Coppermine processors with a clock inferior to 800 MHz works externally at 66 MHz. Celeron Coppermine from 800 MHz to 1.1 GHz works externally at 100 MHz.

All Celeron Models

Figure 5: Celeron Coppermine with FC-PGA packaging.

Main features of Celeron Coppermine were:

  • Based on Pentium III with Coppermine core
  • Manufacturing process: 0.18 μm
  • L1 cache: 32 KB total, 16 KB for instructions and 16 KB for data
  • L2 cache: 128 KB
  • External clock rate: 66 MHz (models up to 766 MHz) or 100 MHz (models starting at 800 MHz)
  • Packaging: FC-PGA
  • Socket: Socket 370
  • Added support to SSE instructions

Available models of Celeron Coppermine are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

Modelo Internal Clock

External Clock

Voltage TDP 
SL46S  533 MHz 

66 MHz

1.5 V  11.2 W 
SL3W7  566 MHz 

66 MHz

1.5 V  11.9 W 
SL4PC  566 MHz 

66 MHz

1.7 V  11.9 W 
SL4NW  566 MHz 

66 MHz

1.7 V  11.9 W 
SL46T  566 MHz 

66 MHz

1.5 V  11.9 W 
SL3W8  600 MHz 

66 MHz

1.5 V  12.6 W 
SL46U  600 MHz 

66 MHz

1.5 V  12.6 W 
SL4PB  600 MHz 

66 MHz

1.7 V  12.6 W 
SL4NX  600 MHz 

66 MHz

1.7 V  12.6 W 
SL3VS  633 MHz 

66 MHz

1.65 V  16.5 W 
SL4PA  633 MHz 

66 MHz

1.7 V  16.5 W 
SL3W9  633 MHz 

66 MHz

1.6 V  16.5 W 
SL4NY  633 MHz 

66 MHz

1.7 V  16.5 W 
SL4AB  667 MHz 

66 MHz

1.65 V  17.5 W 
SL4NZ  667 MHz 

66 MHz

1.7 V  17.5 W 
SL48E  667 MHz 

66 MHz

1.65 V  17.5 W 
SL4P9  667 MHz 

66 MHz

1.7 V  17.5 W 
SL48F  700 MHz 

66 MHz

1.65 V  18.3 W 
SL4P2  700 MHz 

66 MHz

1.7 V  18.3 W 
SL4P8  700 MHz 

66 MHz

1.75 V  18.3 W 
SL4E6  700 MHz 

66 MHz

1.6 V  18.3 W 
SL4P3  733 MHz 

66 MHz

1.6 V  19.1 W 
SL4P7  733 MHz 

66 MHz

1.7 V  19.1 W 
SL52Y  733 MHz 

66 MHz

1.25 V – 1.4 V  22.8 W 
SL4QF  766 MHz 

66 MHz

1.6 V  20 W 
SL5EA  766 MHz 

66 MHz

1.75 V  23.6 W 
SL52X  766 MHz 

66 MHz

1.75 V  23.6 W 
SL4P6  766 MHz 

66 MHz

1.7 V  20 W 
SL54P  800 MHz 

100 MHz

1.75 V  24.5 W 
SL5WW  800 MHz 

100 MHz

1.75 V  24.5 W 
SL55R  800 MHz 

100 MHz

1.7 V  20.8 W 
SL4TF  800 MHz 

100 MHz

1.7 V  20.8 W 
SL5EB  800 MHz 

100 MHz

1.75 V  24.5 W 
SL5WC  800 MHz 

100 MHz

1.75 V  24.5 W 
SL5GA  850 MHz 

100 MHz

1.7 V  22.5 W 
SL5GB  850 MHz 

100 MHz

1.7 V  22.5 W 
SL5WX  850 MHz 

100 MHz

1.75 V  25.7 W 
SL54Q  850 MHz 

100 MHz

1.25 V – 1.4 V  25.7 W 
SL5EC  850 MHz 

100 MHz

1.75 V  25.7 W 
SL5WB  850 MHz 

100 MHz

1.75 V  25.7 W 
SL633  900 MHz 

100 MHz

1.75 V  30 W 
SL5WY  900 MHz 

100 MHz

1.75 V  26.7 W 
SL5LX  900 MHz 

100 MHz

1.75 V  26.7 W 
SL5WA  900 MHz 

100 MHz

1.75 V  26.7 W 
SL5MQ  900 MHz 

100 MHz

1.75 V  26.7 W 
SL5UZ  950 MHz 

100 MHz

1.75 V  26.7 W 
SL5V2  950 MHz 

100 MHz

1.75 V  26.7 W 
SL634  950 MHz 

100 MHz

1.75 V  32 W 
SL5XQ  1GHz 

100 MHz

1.75 V  29 W 
SL635  1GHz 

100 MHz

1.75 V  29 W 
SL5XT  1GHz 

100 MHz

1.75 V  29 W 
SL5XU  1.1GHz 

100 MHz

1.75 V  33 W
SL5XR  1.1GHz 

100 MHz

1.75 V  33 W

[nextpage title=”Tualatin”]

Celeron Tualatin was based on Pentium III Tualatin core and had no more than 44 million transistors. This increase on the number of transistors is due to the architecture technology used on Celeron Tualatin, which was of 0.13 µm (Celeron III used a 0.25 µm technology). There was an increase on L2 cache, which had 256 KB in this version.

Intel made Celeron Tualatin available for socket 370 on versions ranging from 900 MHz to 1.4 GHz. All these versions of Celeron Tualatin work externally at 100 MHz.

Celeron Tualatin used a new kind of chip package called FC-PGA2, which is different from FC-PGA because of its metallic plate on top of the processor. This metallic plate allows a better heat transference between the processor and the heatsink. This metallic plate also protects the processor core from possible damages that could happen during the cooler installation.

All Celeron Models

Figure 6: Celeron Tualatin with FC-PGA2 packaging.

In spite of the fact that Celeron Tualatin is a socket 370 processor, it cannot be installed on an old socket 370 motherboard. This is because Tualatin core redefined some 370 socket pins, which makes Celeron Tualatin incompatible for old motherboards. Thus, before buying a motherboard for your Celeron Tualatin, be sure that it is compatible with Tualatin core.

Main features of Celeron Tualatin were:

  • Based on Pentium III with Tualatin core
  • Manufacturing process: 0.13 μm
  • L1 cache: 32 KB total, 16 KB for instructions and 16 KB for data
  • L2 cache: 256 KB
  • External clock rate: 100 MHz
  • Packaging: FC-PGA2
  • Socket: Socket 370
  • SSE instructions

Available models of Celeron Tualatin are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

Model Internal Clock Voltage TDP
SL6JQ 1 GHz 1.5 V 29.5 W
SL6CB 1 GHz 1.5 V 29.5 W
SL5VP 1 GHz 1.5 V 27.8 W
SL5ZF 1 GHz 1.5 V 27.8 W
SL5ZE 1.1 GHz 1.5 V 28.9 W
SL6RM 1.1 GHz 1.5 V 28.9 W
SL6JR 1.1 GHz 1.5 V 29.5 W
SL5VQ 1.1 GHz 1.5 V 28.9 W
SL6CA 1.1 GHz 1.5 V 30.8 W
SL656 1.2 GHz 1.5 V 32.1 W
SL6RP 1.2 GHz 1.5 V 29.9 W
SL5Y5 1.2 GHz 1.5 V 29.9 W
SL6JS 1.2 GHz 1.5 V 32 W
SL5XS 1.2 GHz 1.5 V 29.9 W
SL68P 1.2 GHz 1.5 V 32 W
SL6C8 1.2 GHz 1.5 V 32 W
SL6JT 1.3 GHz

1.5 V 32 W
SL5ZJ 1.3 GHz 1.5 V 33.4 W
SL6C7 1.3 GHz 1.5 V 32 W
SL5VR 1.3 GHz 1.5 V 33.4 W
SL64V 1.4 GHz 1.5 V 34.8 W
SL68G 1.4 GHz 1.5 V 34.8 W
SL6JV 1.4 GHz 1.5 V 33.2 W
SL6JU 1.4 GHz 1.5 V
SL6C6 1.4 GHz 1.5 V

[nextpage title=”Willamette and Northwood”]

Celeron Willamette is a 7th generation processor based on Pentium 4 Willamette core. It uses the FC-PGA2 packaging and is installed on socket 478 motherboards. It is important to remember that the first Pentium 4 models used socket 423 motherboards and no version of Celeron was launched for this kind of socket.

The architecture of Celeron Willamette L1 cache is completely different from other Celeron models presented until now, being based on the same architecture used by Pentium 4 processor. Instead of having a L1 data cache and a L1 instruction cache, this Celeron version has a 8KB L1 data cache and a trace execution cache.

The trace execution cache is located between the instruction decoder and the execution unit and is used to store the instructions already decoded. This cache stores up to 12 K microinstructions. Since each microinstruction has approximately 100 bits, this cache unit stores around 150 KB of data.

Another difference between this Celeron model and the previous ones is that it uses a 256-bit data path to communicate with its L2 memory cache, while this communication was previously done using a 64-bit or 128-bit data path.

Another important detail regarding Celeron Willamette is about its external bus operation. Celeron Willamette transfers not only one, but four data per clock pulse. So, the performance of its external bus is four times higher than a conventional external bus which runs with the same clock. Celeron Willamette works externally at a speed of 400 MHz (100 MHz x 4) reaching a theoretical maximum transfer rate of 3.2 GB/s.

Celeron Willamette was built using a process of 0.18 µm. It gives support to SSE2, and is available on versions ranging from 1.7 GHz to 1.8 GHz.

All Celeron Models

Figure 7: Celeron Willamette with FC-PGA2 packaging.

All Celeron Models

Figure 8: Celeron Willamette external bus works transferring four data for each clock pulse.

The only difference between Celeron Willamette and Northwood resides in the fact that Celeron Northwood is based on Pentium 4 Northwood core and was built with a technology of 0.13 µm. Everything said about Celeron Willamette is also valid for Celeron Northwood, which is available in clocks ranging from 2.0 GHz to 2.8 GHz.

Main features of Celeron Willamette and Northwood were:

  • Based on Pentium 4 with Willamette core (models up to 1.8 GHz) or Northwood core (models starting at 2 GHz)
  • Manufacturing process: 0.18 μm (for models based on Willamette core) or 13 μm (for models based on Northwood core)
  • L1 cache: 8 KB for data and 150 KB trace cache
  • L2 cache: 128 KB
  • External clock rate: 400 MHz (100 MHz transferring four data per clock cycle)
  • Packaging: FC-PGA2
  • Socket: Socket 478
  • Added support to SSE2 instructions, keeping support to SSE

Available models of Celeron Willamette and Northwood are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

Model Internal Clock Voltage TDP Technology
SL68C 1.7 GHz 1.75 V 63.5 W 0.18 µm
SL69Z 1.7 GHz 1.75 V 63.5 W 0.18 µm
SL6A2 1.8 GHz 1.75 V 66.1 W 0.18 µm
SL7RU 1.8 GHz 1.475 V – 1.525 V 59.1 W 0.18 µm
SL68D 1.8 GHz 1.75 V 66.1 W 0.18 µm
SL6LC 2 GHz 1.53 V 52.8 W 0.13 µm
SL68F 2 GHz 1.75 V 0.13 µm
SL6HY 2 GHz 1.53 V 52.8 W 0.13 µm
SL6RV 2 GHz 1.25 V – 1.525 V 52.8 W 0.13 µm
SL6VY 2 GHz 1.25 V – 1.525 V 52.8 W 0.13 µm
SL6SW 2 GHz 1.525 V 52.8 W 0.13 µm
SL6VR 2 GHz 1.25 V – 1.525 V 52.8 W 0.13 µm
SL6SY 2.1 GHz 1.525 V 55.5 W 0.13 µm
SL6RS 2.1 GHz 1.25 V – 1.525 V 55.5 W 0.13 µm
SL6VZ 2.1 GHz 1.25 V – 1.525 V 55.5 W 0.13 µm
SL6VS 2.1 GHz 1.25 V – 1.525 V 55.5 W 0.13 µm
SL6SX 2.2 GHz 1.525 V 57.1 W 0.13 µm
SL6W2 2.2 GHz 1.25 V – 1.525 V 57.1 W 0.13 µm
SL6VT 2.2 GHz 1.25 V – 1.525 V 57.1 W 0.13 µm
SL6RW 2.2 GHz 1.25 V – 1.525 V 57.1 W 0.13 µm
SL6T2 2.3 GHz 1.5 V 58.3 W 0.13 µm
SL6XJ 2.3 GHz 1.25 V – 1.525 V 58.3 W 0.13 µm
SL6T3 2.3 GHz 1.525 V 58.3 W 0.13 µm
SL6T5 2.3 GHz 1.525 V 58.3 W 0.13 µm
SL6WD 2.3 GHz 1.25 V – 1.525 V 58.3 W 0.13 µm
SL6VU 2.4 GHz 1.25 V – 1.525 V 59.8 W 0.13 µm
SL6W4 2.4 GHz 1.25 V – 1.525 V 59.8 W 0.13 µm
SL6XG 2.4 GHz 1.525 V 59.8 W 0.13 µm
SL72B 2.5 GHz 1.25 V – 1.525 V 61 W 0.13 µm
SL6ZY 2.5 GHz 1.25 V – 1.525 V 61 W 0.13 µm
SL6W5 2.6 GHz 1.25 V – 1.525 V 62.6 W 0.13 µm
SL6VV 2.6 GHz 1.25 V – 1.525 V 62.6 W 0.13 µm
SL77S 2.7 GHz 1.25 V – 1.525 V 66.8 W 0.13 µm
SL77U 2.7 GHz 1.25 V – 1.525 V 66.8 W 0.13 µm
SL77V 2.8 GHz 1.25 V – 1.525 V 68.4 W 0.13 µm
SL77T 2.8 GHz 1.25 V – 1.525 V 68.4 W 0.13 µm

[nextpage title=”Celeron D”]

Celeron D is based on Pentium 4 Prescott core and is built on 90- or 65-nanometer technology.

Celeron D has a L1 data cache of 16 KB, a L2 memory cache of 256 KB, works externally at 533 MHz (133 MHz transferring four data per each clock cycle), gives support to the multimedia instructions SSE3, FC-PGA2 packaging, socket 478 or 775 and can be found with c
lock speed ranging from 2.53 GHz to 3.2 GHz. Being a simplified version of Pentium 4 Prescott, Celeron D does not support the Hyper-Threading technology, which allows the simulation of two logical processors on one single material processor that is present on Pentium 4 processors.

All Celeron Models

Figure 9: 2.8 GHz Celeron D with socket 478 pin.

All Celeron ModelsFigure 10: 775 pin layout used by Pentium 4 and Celeron D processors.

All Celeron Models

Figure 11: Detail of a 775 socket. Note that the pins are situated on the socket and not on the processor.

Main features of Celeron D are:

  • Based on Pentium 4 with Prescott core
  • Manufacturing process: 90 nm or 65 nm
  • L1 cache: 16 KB for data and 150 KB trace cache
  • L2 cache: 256 KB
  • External clock rate: 533 MHz (133 MHz transferring four data per clock cycle)
  • Packaging: FC-PGA2 (socket 478) or FC-LGA (socket LGA775)
  • Socket: Socket 478 or Socket LGA775
  • Added support to SSE3 instructions, keeping support to SSE and SSE2
  • Execute Disable technology on selected models
  • EM64T Technology (a.k.a. “64-bit technology”) on selected models

Available models of Celeron D are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation. 

sSpec Model Internal Clock L2 Cache

Voltage

TDP

Technology Socket

Execute Disable

EM64T

SL9KJ 365 3.60 GHz 512 KB

1.25 V – 1.30 V

65 W

65 nm 775

Yes

Yes

SL9KK 360 3.46 GHz 512 KB

1.25 V – 1.30 V

65 W

65 nm 775

Yes

Yes

SL96N 356 3.33 GHz 512 KB

1.25 V – 1.30 V

86 W

65 nm 775

Yes

Yes

SL8HS 355 3.33 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 775

Yes

Yes

SL8HF 351 3.20 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL96P 352 3.20 GHz 512 KB

1.25 V – 1.30 V

86 W

65 nm 775

Yes

Yes

SL8HQ 350 3.20 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL9BS 351 3.20 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 775

Yes

Yes

SL7TZ 351 3.20 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7NY N/A 3.20 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8HP 345 3.06 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7W3 345 3.06 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7VV 345J 3.06 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7TY 346 3.06 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL8HD 346 3.06 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7TQ 345J 3.06 GHz 256 KB

1.287 V – 1.40 V

84 W

90 nm 775

Yes

No

SL9KN 347 3.06 GHz 512 KB

1.25 V – 1.30 V

65 W

65 nm 775

Yes

Yes

SL9BR 346 3.06 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7DN 345 3.06 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL7NX 345 3.06 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL9XU 347 3.06 GHz 512 KB

1.25 V – 1.30 V

86 W

65 nm 775

No

Yes

SL7TP 340J 2.93 GHz 256 KB

1.287 V – 1.40 V

84 W

90 nm 775

No

No

SL8HB 341 2.93 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7W2 340 2.93 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7TX 341 2.93 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7TS 340 2.93 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7RN 340 2.93 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL7SV 340 2.93 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

No

SL8HN 340 2.93 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7Q9 340 2.93 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7C7 335 2.80 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7NW 335 2.80 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7VT 335J 2.80 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7TJ 335 2.80 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7TN 335J 2.80 GHz 256 KB

1.287 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7L2 335 2.80 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL7SU 335 2.80 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

No

SL7TW 336 2.80 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7DM 335 2.80 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL98W 336 2.80 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7VZ 335 2.80 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8HM 335 2.80 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8H9 336 2.80 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7TV 331 2.66 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7NV 330 2.66 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL8H7 331 2.66 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7TH 330 2.66 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8HL 330 2.66 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7TM 330J 2.66 GHz 256 KB

1.287 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7ST 330 2.66 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

No

SL98V 331 2.66 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7DL 330 2.66 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7VS 330J 2.66 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7C6 330 2.66 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7KZ 330 2.66 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7VY 330 2.66 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7SS 325 2.53 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

No

SL7C5 325 2.53 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7NU 325 2.53 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7ND 325 2.53 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL98U 326 2.53 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

No

Yes

SL7KY 325 2.53 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL8HK 325 2.53 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7VR 325J 2.53 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

No

SL8H5 326 2.53 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7TU 326 2.53 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

Yes

SL7VX 325 2.53 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7TL 325J 2.53 GHz 256 KB

1.287 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7TG 325 2.53 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7C4 320 2.40 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7KX 320 2.40 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7VW 320 2.40 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL7VQ 320 2.40 GHz 256 KB

1.25 V – 1.40 V

84 W

90 nm 775

Yes

No

SL7JV 320 2.40 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8HJ 320 2.40 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7XG 315 2.26 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL8HH 315 2.26 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL7WS 315 2.26 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL93Q 315 2.26 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL87K 315 2.26 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL7XY N/A 2.26 GHz 256 KB

1.287 V – 1.40 V

73 W

90 nm 478

No

No

SL8AW 315 2.26 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8RZ 310 2.13 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL93R 310 2.13 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8S4 310 2.13 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

SL8S2 310 2.13 GHz 256 KB

1.25 V – 1.40 V

73 W

90 nm 478

No

No

[nextpage title=”Celeron 400 Series”]

Celeron 400 series processors are based on Core microarchitecture, the same used by Core 2 Duo CPUs having, however, only one processing core (Core 2 Duo processors have two processing cores). Celeron 400 series main technical specs are:

  • Based on Conroe-L core, the same one used by Core 2 Duo but with just one processing core
  • Manufacturing process: 65 nm
  • L1 cache: 64 KB total, 32 KB for instructions and 32 KB for data.
  • L2 cache: 512 KB.
  • External clock rate: 800 MHz (200 MHz transferring four data per clock cycle)
  • Packaging: FC-LGA6
  • Socket: Socket LGA775.
  • SSE, SSE2 and SSE3 instructions
  • Execute Disable technology
  • EM64T technology (a.k.a. 64-bit technology)

Available models of Celeron 400 series are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation. 

sSpec

Model

Internal Clock

Voltage

TDP

SLAFZ 450 2.2 GHz 1.0 V – 1.3375V 35 W

SL9XL

440

2 GHz

1.050V – 1.300V

35 W

SL9XN

430

1.80 GHz

1.050V – 1.300V

35 W

SL9XP 420 1.60 GHz

1.050V – 1.300V

35 W

[nextpage title=”Celeron E1000 Series (Dual-Core)”]

Intel is finally bringing dual-core technology to the Celeron family. At first this could sound contradictory since the goal of Celeron processors is to be a low-cost CPU targeted to those users that can’t or don’t want to pay for a CPU with the latest technological features available. However dual-core technology can’t be considered “the latest technological feature” anymore and historically what Intel does is to push what was once a high-end feature to the mainstream CPUs and then, after a while, to the entry-level CPUs. Since today’s high-end CPUs are quad-core and Intel has been selling only dual-core CPUs for the mainstream market for quite a while, not more natural than start introducing dual-core CPUs to the entry-level market as well. As you can see on a near future we will only have CPUs with at least two cores available on the market.

Dual-core Celeron processors are based on Core microarchitecture, the same used by Core 2 Duo CPUs. These CPUs are also known by the codename Allendale.

Celeron E1000 series main features are:

Available models of Celeron E1000 series are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

sSpec Model Internal Clock External Clock TDP Max. Temp. (°C) Voltage (V)
SLAQW E1200 1.6 GHz 800 MHz 65 W 73.3 0.85 – 1.5
SLAR2 E1400 2.0 GHz 800 MHz 65 W 73.3 0.85 – 1.5
SLAQZ E1500 2.2 GHz 800 MHz 65 W 73.3 0.85 – 1.5
SLAQY E1600 2.4 GHz 800 MHz 65 W 73.3 0.85 – 1.5

[nextpage title=”Celeron E3000 Series (Dual-Core)”]E3000 Series Celeron processors have two processing cores and they are based in 45 nm core microarchiteture (Penryn Core).

Celeron E3000 series main features are:

Available models of Celeron E3000 series are listed on the chart below. TDP stands for Thermal Design Power and indicates the CPU maximum thermal dissipation.

sSpec Model Internal Clock External Clock TDP Max. Temp. (°C) Voltage (V)
SLGTY E3500 2.7 GHz 800 MHz 65 W 74.1 0.85 – 1.3635
SLGTZ E3400 2.6 GHz 800 MHz 65 W 74.1 0.85 – 1.3625
SLGU4 E3300 2.5 GHz 800 MHz 65 W 74.1 0.85 – 1.3625
SLGU5 E3200 2.4 GHz 800 MHz 65 W 74.1 0.85 – 1.3625