• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Hardware Secrets

Hardware Secrets

Uncomplicating the complicated

  • Case
  • Cooling
  • Memory
  • Mobile
    • Laptops
    • Smartphones
    • Tablets
  • Motherboard
  • Networking
  • Other
    • Audio
    • Cameras
    • Consumer Electronics
    • Desktops
    • Museum
    • Software
    • Tradeshows & Events
  • Peripherals
    • Headset
    • Keyboard
    • Mouse
    • Printers
  • Power
  • Storage
  • Video

OCZ GameXstream 700 W Power Supply

OCZ has launched a new power supply series, called GameXstream. We completely disassembled their 700 W model to take a look. Check it out.

Home » OCZ GameXstream 700 W Power Supply

Secondary Analysis

Contents

  • 1. Introduction
  • 2. A Look Inside The GameXstream 700 W
  • 3. Transient Filtering Stage
  • 4. Primary Analysis
  • 5. Secondary Analysis
  • 6. Power Distribution
  • 7. Main Specifications
  • 8. Conclusions

This power supply uses eight Schottky rectifiers on its secondary and they are all the same model: MBRP3045N. This is really unique, as usually power supplies use a different rectifier for each output. Four of them are used for the +12 V output, two of them are used for the +5 V output and two of them are used for the +3.3 V output – even though the +3.3 V output uses a separated rectifier, it is connected at the same transformer outputs as the +5 V line.

Each MBRP3045N rectifier can handle up to 30 A (15 A per internal diode, rated at 100° C).

The maximum theoretical current each line can deliver is given by the formula I / (1 – D), where D is the duty cycle used and I is the maximum current supported by the rectifying diode. Just as an exercise, we can assume a typical duty cycle of 30%.

This would give us a maximum theoretical current of 86 A [(15 A x 4)/(1 – 0.30)] or 1,029 W for the +12 V output, 43 A [(15 A x 2)/(1 – 0.30)] or 214 W for the +5 V output and 43 A or 141 W for the +3.3 V output. The maximum current each line can really deliver will depend on other components, in particular the coil used.

OCZ GameXstream 700 WFigure 13: The eight Schottky rectifiers used on the secondary.

In Figure 14, you can see the thermal sensor located under the secondary heatsink, which controls the fan speed acording to the power supply internal temperature.

OCZ GameXstream 700 WFigure 14: Thermal sensor.

This power supply uses Taiwanese electrolytic capacitors from Teapo, CapXon and OST. The big electrolytic capacitor from the active PFC circuit is rated 85° C while all other smaller capacitors are rated 105° C.

Continue: Power Distribution

Power First Look

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

As a participant in the Amazon Services LLC Associates Program, this site may earn from qualifying purchases. We may also earn commissions on purchases from other retail websites.

How to Avoid Scams on Facebook Marketplace Once and For All

Social media scams generate more than 770 million US dollars in losses in the US alone, and it’s … [Read More...] about How to Avoid Scams on Facebook Marketplace Once and For All

AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

AMD, together with Intel, is one of the major processor manufacturers known in today's market. … [Read More...] about AMD EPYC from Zen1 to Zen4. How it will change the CPU market?

Valorant Phoenix Tips & Tricks You Have to Know

The Phoenix character in Valorant is one of the most amazing to play. Being aggressive, Phoenix will … [Read More...] about Valorant Phoenix Tips & Tricks You Have to Know

Footer

For Performance

  • About
  • Contact
  • Articles
  • Editorials
  • First Look
  • Reviews
  • Tutorials
  • Privacy

Everything you need to know

  • Everything You Need to Know About the Dual-, Triple-, and Quad-Channel Memory Architectures
  • What You Should Know About the SPDIF Connection (2022 Guide)
  • Everything You Need to Know About the Intel Virtualization Technology
  • Everything You Need to Know About the CPU Power Management

Copyright © 2023 · All rights reserved - Hardwaresecrets.com
About Us · Privacy Policy · Contact